Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf, Germany.
J Am Chem Soc. 2011 Mar 2;133(8):2463-80. doi: 10.1021/ja105725e. Epub 2011 Feb 3.
In Förster resonance energy transfer (FRET) experiments, the donor (D) and acceptor (A) fluorophores are usually attached to the macromolecule of interest via long flexible linkers of up to 15 Å in length. This causes significant uncertainties in quantitative distance measurements and prevents experiments with short distances between the attachment points of the dyes due to possible dye-dye interactions. We present two approaches to overcome the above problems as demonstrated by FRET measurements for a series of dsDNA and dsRNA internally labeled with Alexa488 and Cy5 as D and A dye, respectively. First, we characterize the influence of linker length and flexibility on FRET for different dye linker types (long, intermediate, short) by analyzing fluorescence lifetime and anisotropy decays. For long linkers, we describe a straightforward procedure that allows for very high accuracy of FRET-based structure determination through proper consideration of the position distribution of the dye and of linker dynamics. The position distribution can be quickly calculated with geometric accessible volume (AV) simulations, provided that the local structure of RNA or DNA in the proximity of the dye is known and that the dye diffuses freely in the sterically allowed space. The AV approach provides results similar to molecular dynamics simulations (MD) and is fully consistent with experimental FRET data. In a benchmark study for ds A-RNA, an rmsd value of 1.3 Å is achieved. Considering the case of undefined dye environments or very short DA distances, we introduce short linkers with a propargyl or alkenyl unit for internal labeling of nucleic acids to minimize position uncertainties. Studies by ensemble time correlated single photon counting and single-molecule detection show that the nature of the linker strongly affects the radius of the dye's accessible volume (6-16 Å). For short propargyl linkers, heterogeneous dye environments are observed on the millisecond time scale. A detailed analysis of possible orientation effects (κ(2) problem) indicates that, for short linkers and unknown local environments, additional κ(2)-related uncertainties are clearly outweighed by better defined dye positions.
在Förster 共振能量转移(FRET)实验中,供体(D)和受体(A)荧光团通常通过长达 15 Å 的长柔性接头连接到感兴趣的大分子上。这导致定量距离测量存在很大的不确定性,并由于染料之间可能的染料-染料相互作用,阻止了在染料附着点之间距离较短的实验。我们提出了两种方法来克服上述问题,如通过一系列内部标记有 Alexa488 和 Cy5 的 dsDNA 和 dsRNA 的 FRET 测量来证明。首先,我们通过分析荧光寿命和各向异性衰减来研究不同染料接头类型(长、中、短)的接头长度和灵活性对 FRET 的影响。对于长接头,我们描述了一种简单的方法,通过适当考虑染料的位置分布和接头动力学,可以非常准确地确定基于 FRET 的结构。如果知道 RNA 或 DNA 靠近染料的局部结构,并且染料可以在空间允许的空间内自由扩散,则可以通过几何可及体积(AV)模拟快速计算位置分布。AV 方法提供的结果与分子动力学模拟(MD)相似,并且与实验 FRET 数据完全一致。在 dsA-RNA 的基准研究中,达到了 1.3 Å 的均方根偏差值。对于未定义的染料环境或非常短的 DA 距离,我们引入了带有炔基或烯基单元的短接头,用于核酸的内部标记,以最小化位置不确定性。通过整体时间相关单光子计数和单分子检测研究表明,接头的性质强烈影响染料可及体积的半径(6-16 Å)。对于短炔基接头,在毫秒时间尺度上观察到不均匀的染料环境。对可能的取向效应(κ2 问题)的详细分析表明,对于短接头和未知的局部环境,与 κ2 相关的额外不确定性显然被更好定义的染料位置所抵消。