Suppr超能文献

转录因子效应结构域。

Transcription factor effector domains.

作者信息

Frietze Seth, Farnham Peggy J

机构信息

Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA,

出版信息

Subcell Biochem. 2011;52:261-77. doi: 10.1007/978-90-481-9069-0_12.

Abstract

The last decade has seen an incredible breakthrough in technologies that allow histones, transcription factors (TFs), and RNA polymerases to be precisely mapped throughout the genome. From this research, it is clear that there is a complex interaction between the chromatin landscape and the general transcriptional machinery and that the dynamic control of this interface is central to gene regulation. However, the chromatin remodeling enzymes and general TFs cannot, on their own, recognize and stably bind to promoter or enhancer regions. Rather, they are recruited to cis regulatory regions through interaction with site-specific DNA binding TFs and/or proteins that recognize epigenetic marks such as methylated cytosines or specifically modified amino acids in histones. These "recruitment" factors are modular in structure, reflecting their ability to interact with the genome via one region of the protein and to simultaneously bind to other regulatory proteins via "effector" domains. In this chapter, we provide examples of common effector domains that can function in transcriptional regulation via their ability to (a) interact with the basal transcriptional machinery and general co-activators, (b) interact with other TFs to allow cooperative binding, and (c) directly or indirectly recruit histone and chromatin modifying enzymes.

摘要

在过去十年中,技术取得了令人难以置信的突破,使得组蛋白、转录因子(TFs)和RNA聚合酶能够在整个基因组中被精确绘制。从这项研究中可以清楚地看出,染色质景观与一般转录机制之间存在复杂的相互作用,并且这种界面的动态控制对于基因调控至关重要。然而,染色质重塑酶和一般转录因子自身无法识别并稳定结合到启动子或增强子区域。相反,它们是通过与位点特异性DNA结合转录因子和/或识别表观遗传标记(如甲基化胞嘧啶或组蛋白中特定修饰氨基酸)的蛋白质相互作用,被招募到顺式调控区域的。这些“招募”因子在结构上是模块化的,这反映了它们通过蛋白质的一个区域与基因组相互作用,并同时通过“效应器”结构域与其他调控蛋白结合的能力。在本章中,我们提供了一些常见效应器结构域的例子,这些结构域可以通过以下能力在转录调控中发挥作用:(a)与基础转录机制和一般共激活因子相互作用;(b)与其他转录因子相互作用以实现协同结合;(c)直接或间接招募组蛋白和染色质修饰酶。

相似文献

1
Transcription factor effector domains.
Subcell Biochem. 2011;52:261-77. doi: 10.1007/978-90-481-9069-0_12.
2
Enhancer function regulated by combinations of transcription factors and cofactors.
Genes Cells. 2018 Oct;23(10):808-821. doi: 10.1111/gtc.12634. Epub 2018 Aug 31.
4
Step out of the groove: epigenetic gene control systems and engineered transcription factors.
Adv Genet. 2006;56:163-204. doi: 10.1016/S0065-2660(06)56005-5.
5
Chromatin remodeling effects on enhancer activity.
Cell Mol Life Sci. 2016 Aug;73(15):2897-910. doi: 10.1007/s00018-016-2184-3. Epub 2016 Mar 30.
7
FACT and the proteasome promote promoter chromatin disassembly and transcriptional initiation.
J Biol Chem. 2009 Aug 28;284(35):23461-71. doi: 10.1074/jbc.M109.019562. Epub 2009 Jul 1.
10
The role of DNA methylation and histone modifications in transcriptional regulation in humans.
Subcell Biochem. 2013;61:289-317. doi: 10.1007/978-94-007-4525-4_13.

引用本文的文献

1
ZNF865 (BLST) Regulates Human Cell Senescence and DNA Damage.
bioRxiv. 2025 Jun 18:2025.06.13.659603. doi: 10.1101/2025.06.13.659603.
3
Revisiting models of enhancer-promoter communication in gene regulation.
Genome Res. 2025 Jun 2;35(6):1277-1286. doi: 10.1101/gr.278389.123.
4
Activation of PERK/eIF2α/ATF4 signaling inhibits ERα expression in breast cancer.
Neoplasia. 2025 Apr 18;65:101165. doi: 10.1016/j.neo.2025.101165.
6
S100A2 promotes clear cell renal cell carcinoma tumor metastasis through regulating GLUT2 expression.
Cell Death Dis. 2025 Feb 27;16(1):135. doi: 10.1038/s41419-025-07418-1.
8
The regulation of NFKB1 on CD200R1 expression and their potential roles in Parkinson's disease.
J Neuroinflammation. 2024 Sep 18;21(1):229. doi: 10.1186/s12974-024-03231-3.
9
Novel germline STAT3 gain-of-function mutation causes autoimmune diseases and severe growth failure.
J Allergy Clin Immunol Glob. 2024 Jul 26;3(4):100312. doi: 10.1016/j.jacig.2024.100312. eCollection 2024 Nov.
10
Using High-Throughput Measurements to Identify Principles of Transcriptional and Epigenetic Regulators.
Methods Mol Biol. 2024;2842:79-101. doi: 10.1007/978-1-0716-4051-7_4.

本文引用的文献

1
ZNF274 recruits the histone methyltransferase SETDB1 to the 3' ends of ZNF genes.
PLoS One. 2010 Dec 8;5(12):e15082. doi: 10.1371/journal.pone.0015082.
2
c-Myc regulates transcriptional pause release.
Cell. 2010 Apr 30;141(3):432-45. doi: 10.1016/j.cell.2010.03.030.
3
Transcript Elongation by RNA Polymerase II.
Annu Rev Biochem. 2010;79:271-93. doi: 10.1146/annurev.biochem.78.062807.091425.
4
Diversity in DNA recognition by p53 revealed by crystal structures with Hoogsteen base pairs.
Nat Struct Mol Biol. 2010 Apr;17(4):423-9. doi: 10.1038/nsmb.1800. Epub 2010 Apr 4.
6
The Pfam protein families database.
Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22. doi: 10.1093/nar/gkp985. Epub 2009 Nov 17.
7
Defining mechanisms that regulate RNA polymerase II transcription in vivo.
Nature. 2009 Sep 10;461(7261):186-92. doi: 10.1038/nature08449.
8
ChIP-seq: advantages and challenges of a maturing technology.
Nat Rev Genet. 2009 Oct;10(10):669-80. doi: 10.1038/nrg2641. Epub 2009 Sep 8.
9
pRb, a local chromatin organizer with global possibilities.
Chromosoma. 2010 Feb;119(1):1-11. doi: 10.1007/s00412-009-0238-0. Epub 2009 Aug 28.
10
Insights from genomic profiling of transcription factors.
Nat Rev Genet. 2009 Sep;10(9):605-16. doi: 10.1038/nrg2636. Epub 2009 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验