文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用染色质和基因组特征的综合建模识别小鼠胚胎干细胞中的增强子。

Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features.

机构信息

Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.

出版信息

BMC Genomics. 2012 Apr 26;13:152. doi: 10.1186/1471-2164-13-152.


DOI:10.1186/1471-2164-13-152
PMID:22537144
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3406964/
Abstract

BACKGROUND: Epigenetic modifications, transcription factor (TF) availability and differences in chromatin folding influence how the genome is interpreted by the transcriptional machinery responsible for gene expression. Enhancers buried in non-coding regions are found to be associated with significant differences in histone marks between different cell types. In contrast, gene promoters show more uniform modifications across cell types. Here we used histone modification and chromatin-associated protein ChIP-Seq data sets in mouse embryonic stem (ES) cells as well as genomic features to identify functional enhancer regions. Using co-bound sites of OCT4, SOX2 and NANOG (co-OSN, validated enhancers) and co-bound sites of MYC and MYCN (limited enhancer activity) as enhancer positive and negative training sets, we performed multinomial logistic regression with LASSO regularization to identify key features. RESULTS: Cross validations reveal that a combination of p300, H3K4me1, MED12 and NIPBL features to be top signatures of co-OSN regions. Using a model from 10 signatures, 83% of top 1277 putative 1 kb enhancer regions (probability greater than or equal to 0.8) overlapped with at least one TF peak from 7 mouse ES cell ChIP-Seq data sets. These putative enhancers are associated with increased gene expression of neighbouring genes and significantly enriched in multiple TF bound loci in agreement with combinatorial models of TF binding. Furthermore, we identified several motifs of known TFs significantly enriched in putative enhancer regions compared to random promoter regions and background. Comparison with an active H3K27ac mark in various cell types confirmed cell type-specificity of these enhancers. CONCLUSIONS: The top enhancer signatures we identified (p300, H3K4me1, MED12 and NIPBL) will allow for the identification of cell type-specific enhancer regions in diverse cell types.

摘要

背景:表观遗传修饰、转录因子 (TF) 的可及性以及染色质折叠的差异会影响转录机器对负责基因表达的基因组的解读。发现在不同细胞类型之间,位于非编码区域的增强子与组蛋白标记之间存在显著差异。相比之下,基因启动子在不同细胞类型中显示出更均匀的修饰。在这里,我们使用了小鼠胚胎干细胞 (ES) 细胞中的组蛋白修饰和染色质相关蛋白 ChIP-Seq 数据集以及基因组特征来识别功能增强子区域。使用 OCT4、SOX2 和 NANOG 的共结合位点(经验证的增强子)和 MYC 和 MYCN 的共结合位点(有限的增强子活性)作为增强子阳性和阴性训练集,我们使用多项逻辑回归和 LASSO 正则化来识别关键特征。

结果:交叉验证表明,p300、H3K4me1、MED12 和 NIPBL 特征的组合是共 OSN 区域的顶级特征。使用来自 10 个特征的模型,前 1277 个假定的 1 kb 增强子区域(概率大于或等于 0.8)的 83%至少与来自 7 个小鼠 ES 细胞 ChIP-Seq 数据集的一个 TF 峰重叠。这些假定的增强子与相邻基因的表达增加相关,并且与 TF 结合的组合模型一致,在多个 TF 结合位点显著富集。此外,与各种细胞类型中的活性 H3K27ac 标记相比,我们在假定的增强子区域中鉴定出了几个已知 TF 的基序,这些基序显著富集。

结论:我们鉴定的顶级增强子特征(p300、H3K4me1、MED12 和 NIPBL)将允许在不同的细胞类型中识别细胞特异性增强子区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa09/3406964/5718ec3cb7d1/1471-2164-13-152-8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa09/3406964/0c27a07b6093/1471-2164-13-152-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa09/3406964/2d0d3f853eaf/1471-2164-13-152-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa09/3406964/1e557994000f/1471-2164-13-152-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa09/3406964/7f50e78b1ff5/1471-2164-13-152-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa09/3406964/0ace9a2d7602/1471-2164-13-152-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa09/3406964/0d69646179b1/1471-2164-13-152-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa09/3406964/a74aecf82bdd/1471-2164-13-152-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa09/3406964/5718ec3cb7d1/1471-2164-13-152-8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa09/3406964/0c27a07b6093/1471-2164-13-152-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa09/3406964/2d0d3f853eaf/1471-2164-13-152-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa09/3406964/1e557994000f/1471-2164-13-152-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa09/3406964/7f50e78b1ff5/1471-2164-13-152-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa09/3406964/0ace9a2d7602/1471-2164-13-152-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa09/3406964/0d69646179b1/1471-2164-13-152-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa09/3406964/a74aecf82bdd/1471-2164-13-152-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa09/3406964/5718ec3cb7d1/1471-2164-13-152-8.jpg

相似文献

[1]
Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features.

BMC Genomics. 2012-4-26

[2]
Genome-wide analysis reveals Sall4 to be a major regulator of pluripotency in murine-embryonic stem cells.

Proc Natl Acad Sci U S A. 2008-12-16

[3]
Understanding impediments to cellular conversion to pluripotency by assessing the earliest events in ectopic transcription factor binding to the genome.

Cell Cycle. 2013-4-19

[4]
Transcriptional reprogramming and chromatin remodeling accompanies Oct4 and Nanog silencing in mouse trophoblast lineage.

Stem Cells Dev. 2014-2-1

[5]
SOX2 represses c-MYC transcription by altering the co-activator landscape of the c-MYC super-enhancer and promoter regions.

J Biol Chem. 2024-9

[6]
BACH1 recruits NANOG and histone H3 lysine 4 methyltransferase MLL/SET1 complexes to regulate enhancer-promoter activity and maintains pluripotency.

Nucleic Acids Res. 2021-2-26

[7]
Stat3 and c-Myc genome-wide promoter occupancy in embryonic stem cells.

PLoS One. 2008

[8]
TP63, SOX2, and KLF5 Establish a Core Regulatory Circuitry That Controls Epigenetic and Transcription Patterns in Esophageal Squamous Cell Carcinoma Cell Lines.

Gastroenterology. 2020-10

[9]
Folate Receptor Alpha Upregulates Oct4, Sox2 and Klf4 and Downregulates miR-138 and miR-let-7 in Cranial Neural Crest Cells.

Stem Cells. 2016-6-28

[10]
Combinatorial binding in human and mouse embryonic stem cells identifies conserved enhancers active in early embryonic development.

PLoS Comput Biol. 2011-12-22

引用本文的文献

[1]
Ubinuclein 2 is essential for mouse development and functions in X chromosome inactivation.

PLoS Genet. 2025-6-2

[2]
A Sox2 enhancer cluster regulates region-specific neural fates from mouse embryonic stem cells.

G3 (Bethesda). 2025-4-17

[3]
Enhancer Arrays Regulating Developmental Genes: Sox2 Enhancers as a Paradigm.

Results Probl Cell Differ. 2024

[4]
Pediatric glioma histone H3.3 K27M/G34R mutations drive abnormalities in PML nuclear bodies.

Genome Biol. 2023-12-8

[5]
Epigenetic reprogramming of a distal developmental enhancer cluster drives SOX2 overexpression in breast and lung adenocarcinoma.

Nucleic Acids Res. 2023-10-27

[6]
Using Synthetic DNA Libraries to Investigate Chromatin and Gene Regulation.

Chromosoma. 2023-9

[7]
Transcriptional regulation and chromatin architecture maintenance are decoupled functions at the locus.

Genes Dev. 2022-6-1

[8]
Epigenetic Regulation of Endothelial Cell Lineages During Zebrafish Development-New Insights From Technical Advances.

Front Cell Dev Biol. 2022-5-9

[9]
The acetyltransferase p300 is recruited in trans to multiple enhancer sites by lncSmad7.

Nucleic Acids Res. 2022-3-21

[10]
A flexible repertoire of transcription factor binding sites and a diversity threshold determines enhancer activity in embryonic stem cells.

Genome Res. 2021-4

本文引用的文献

[1]
H3K4 tri-methylation provides an epigenetic signature of active enhancers.

EMBO J. 2011-8-16

[2]
Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions.

Genome Res. 2011-6-1

[3]
Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation.

Nature. 2011-4-3

[4]
Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart.

Proc Natl Acad Sci U S A. 2011-3-17

[5]
Enhancer function: new insights into the regulation of tissue-specific gene expression.

Nat Rev Genet. 2011-3-1

[6]
Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells.

Nature. 2011-2-17

[7]
Function and regulation of the Mediator complex.

Curr Opin Genet Dev. 2011-2-15

[8]
Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells.

Cell Stem Cell. 2011-2-4

[9]
A unique chromatin signature uncovers early developmental enhancers in humans.

Nature. 2010-12-15

[10]
Histone H3K27ac separates active from poised enhancers and predicts developmental state.

Proc Natl Acad Sci U S A. 2010-11-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索