Suppr超能文献

FACT和蛋白酶体促进启动子染色质解体和转录起始。

FACT and the proteasome promote promoter chromatin disassembly and transcriptional initiation.

作者信息

Ransom Monica, Williams Stephanie K, Dechassa Mekonnen L, Das Chandrima, Linger Jeffrey, Adkins Melissa, Liu Chengwei, Bartholomew Blaine, Tyler Jessica K

机构信息

Department of Biochemistry, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.

出版信息

J Biol Chem. 2009 Aug 28;284(35):23461-71. doi: 10.1074/jbc.M109.019562. Epub 2009 Jul 1.

Abstract

The packaging of the eukaryotic genome into chromatin represses gene expression by blocking access of the general transcription machinery to the underlying DNA sequences. Accordingly, eukaryotes have developed a variety of mechanisms to disrupt, alter, or disassemble nucleosomes from promoter regions and open reading frames to allow transcription to occur. Although we know that chromatin disassembly from the yeast PHO5 promoter is triggered by the Pho4 activator, the mechanism is far from clear. Here we show that the Pho4 activator can occupy its nucleosome-bound DNA binding site within the PHO5 promoter. In contrast to the role of Saccharomyces cerevisiae FACT (facilitates chromatin transcription) complex in assembling chromatin within open reading frames, we find that FACT is involved in the disassembly of histones H2A/H2B from the PHO5 promoter during transcriptional induction. We have also discovered that the proteasome is required for efficient chromatin disassembly and transcriptional induction from the PHO5 promoter. Mutants of the degradation function of the proteasome have a defect in recruitment of the Pho4 activator, whereas mutants of the ATPase cap of the proteasome do recruit Pho4 but are still delayed for chromatin assembly. Finally, we rule out the possibility that the proteasome or ATPase cap is driving chromatin disassembly via a potential ATP-dependent chromatin remodeling activity.

摘要

真核生物基因组包装成染色质会通过阻止通用转录机制接近潜在的DNA序列来抑制基因表达。因此,真核生物已经发展出多种机制来破坏、改变或拆卸启动子区域和开放阅读框中的核小体,以使转录得以发生。尽管我们知道酵母PHO5启动子的染色质拆卸是由Pho4激活剂触发的,但其机制仍远未明确。在这里,我们表明Pho4激活剂可以占据其在PHO5启动子内与核小体结合的DNA结合位点。与酿酒酵母FACT(促进染色质转录)复合体在开放阅读框内组装染色质的作用相反,我们发现FACT在转录诱导过程中参与了PHO5启动子上组蛋白H2A/H2B的拆卸。我们还发现蛋白酶体是PHO5启动子高效染色质拆卸和转录诱导所必需的。蛋白酶体降解功能的突变体在Pho4激活剂的募集方面存在缺陷,而蛋白酶体ATP酶帽的突变体确实募集了Pho4,但在染色质组装方面仍然延迟。最后,我们排除了蛋白酶体或ATP酶帽通过潜在的ATP依赖染色质重塑活性驱动染色质拆卸的可能性。

相似文献

1
FACT and the proteasome promote promoter chromatin disassembly and transcriptional initiation.
J Biol Chem. 2009 Aug 28;284(35):23461-71. doi: 10.1074/jbc.M109.019562. Epub 2009 Jul 1.
2
In vitro reconstitution of PHO5 promoter chromatin remodeling points to a role for activator-nucleosome competition in vivo.
Mol Cell Biol. 2010 Aug;30(16):4060-76. doi: 10.1128/MCB.01399-09. Epub 2010 Jun 21.
4
A highly conserved region within H2B is important for FACT to act on nucleosomes.
Mol Cell Biol. 2014 Feb;34(3):303-14. doi: 10.1128/MCB.00478-13. Epub 2013 Nov 18.
5
Finish the unfinished: Chd1 resolving hexasome-nucleosome complex with FACT.
Mol Cell. 2024 Sep 19;84(18):3371-3373. doi: 10.1016/j.molcel.2024.08.031.
6
Resolution of transcription-induced hexasome-nucleosome complexes by Chd1 and FACT.
Mol Cell. 2024 Sep 19;84(18):3423-3437.e8. doi: 10.1016/j.molcel.2024.08.022. Epub 2024 Sep 12.
7
8
Histone H3 lysine 4 hypermethylation prevents aberrant nucleosome remodeling at the PHO5 promoter.
Mol Cell Biol. 2011 Aug;31(15):3171-81. doi: 10.1128/MCB.05017-11. Epub 2011 Jun 6.
10
FACT and Asf1 regulate nucleosome dynamics and coactivator binding at the HO promoter.
Mol Cell. 2009 May 14;34(4):405-15. doi: 10.1016/j.molcel.2009.04.010.

引用本文的文献

2
Pluripotency state transition of embryonic stem cells requires the turnover of histone chaperone FACT on chromatin.
iScience. 2023 Nov 28;27(1):108537. doi: 10.1016/j.isci.2023.108537. eCollection 2024 Jan 19.
4
The histone chaperone FACT: a guardian of chromatin structure integrity.
Transcription. 2022 Feb-Jun;13(1-3):16-38. doi: 10.1080/21541264.2022.2069995. Epub 2022 Apr 29.
5
The FACT complex facilitates expression of lysosomal and antioxidant genes through binding to TFEB and TFE3.
Autophagy. 2022 Oct;18(10):2333-2349. doi: 10.1080/15548627.2022.2029671. Epub 2022 Mar 1.
6
Genome-Wide Regulations of the Preinitiation Complex Formation and Elongating RNA Polymerase II by an E3 Ubiquitin Ligase, San1.
Mol Cell Biol. 2022 Jan 20;42(1):e0036821. doi: 10.1128/MCB.00368-21. Epub 2021 Oct 18.
7
Proteasomal Regulation of Mammalian SPT16 in Controlling Transcription.
Mol Cell Biol. 2021 Mar 24;41(4). doi: 10.1128/MCB.00452-20.
8
Myogenin is required for assembly of the transcription machinery on muscle genes during skeletal muscle differentiation.
PLoS One. 2021 Jan 19;16(1):e0245618. doi: 10.1371/journal.pone.0245618. eCollection 2021.
9
The role of FACT in managing chromatin: disruption, assembly, or repair?
Nucleic Acids Res. 2020 Dec 2;48(21):11929-11941. doi: 10.1093/nar/gkaa912.

本文引用的文献

1
H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation.
Mol Cell. 2008 Jul 11;31(1):57-66. doi: 10.1016/j.molcel.2008.04.025.
2
Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation.
Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):9000-5. doi: 10.1073/pnas.0800057105. Epub 2008 Jun 24.
4
The role of chromatin during transcription.
Cell. 2007 Feb 23;128(4):707-19. doi: 10.1016/j.cell.2007.01.015.
5
Transcriptional regulation by chromatin disassembly and reassembly.
Curr Opin Genet Dev. 2007 Apr;17(2):88-93. doi: 10.1016/j.gde.2007.02.001. Epub 2007 Feb 20.
6
A systems approach to measuring the binding energy landscapes of transcription factors.
Science. 2007 Jan 12;315(5809):233-7. doi: 10.1126/science.1131007.
7
ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome.
Mol Cell. 2006 Oct 6;24(1):39-50. doi: 10.1016/j.molcel.2006.08.025.
8
Opposing roles for Set2 and yFACT in regulating TBP binding at promoters.
EMBO J. 2006 Oct 4;25(19):4479-89. doi: 10.1038/sj.emboj.7601333. Epub 2006 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验