Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
ACS Nano. 2011 Jun 28;5(6):5078-87. doi: 10.1021/nn201167j. Epub 2011 May 16.
Thin films composed of nanoparticles exhibit synergistic properties, making them useful for numerous advanced applications. Nanoparticle thin films (NTFs), however, have a very low resistance to mechanical loading and abrasion, presenting a major bottleneck to their widespread use and commercialization. High-temperature sintering has been shown to improve the mechanical durability of NTFs on inorganic substrates; however, these high-temperature processes are not amenable to organic substrates. In this study, we demonstrate that the mechanical durability of TiO(2)/SiO(2) nanoparticle layer-by-layer (LbL) films on glass and polycarbonate substrates can be drastically improved using atomic layer deposition (ALD) at a relatively low temperature. The structure and physical properties of ALD-treated TiO(2)/SiO(2) nanoparticle LbL films are studied using spectroscopic ellipsometry, UV-vis spectroscopy, contact angle measurements, and nanoindentation. The composition of TiO(2)/SiO(2) LbL films as a function of ALD-cycle number is determined through solution ellipsometry, enabling the determination of the characteristic pore size of nanoparticle thin films. Mechanical durability is also investigated by abrasion tests, showing that the robustness of ALD-treated nanoparticle films is comparable to that of thermally calcined films. More importantly, ALD-treated nanoparticle films retain the original functionality of the TiO(2)/SiO(2) LbL films, such as superhydrophilicity and antireflection properties, demonstrating the utility of ALD as a reinforcement method for nanoparticle thin films.
由纳米粒子组成的薄膜表现出协同特性,使其在许多先进应用中非常有用。然而,纳米粒子薄膜(NTF)对机械载荷和磨损的抵抗力非常低,这是它们广泛应用和商业化的主要瓶颈。高温烧结已被证明可以提高无机衬底上 NTF 的机械耐久性;然而,这些高温工艺不适用于有机衬底。在这项研究中,我们证明了使用原子层沉积(ALD)在相对较低的温度下可以显着提高玻璃和聚碳酸酯衬底上的 TiO2/SiO2 纳米粒子层层(LbL)薄膜的机械耐久性。使用光谱椭圆光度法、紫外-可见光谱、接触角测量和纳米压痕研究了 ALD 处理的 TiO2/SiO2 纳米粒子 LbL 薄膜的结构和物理性质。通过溶液椭圆光度法确定了 TiO2/SiO2 LbL 薄膜的组成随 ALD 循环数的变化,从而可以确定纳米薄膜的特征孔径。通过磨损测试还研究了机械耐久性,表明 ALD 处理的纳米粒子薄膜的坚固性可与热煅烧薄膜相媲美。更重要的是,ALD 处理的纳米粒子薄膜保留了 TiO2/SiO2 LbL 薄膜的原始功能,例如超亲水性和抗反射特性,证明了 ALD 作为纳米薄膜增强方法的实用性。