Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287-5701, USA.
Environ Sci Technol. 2011 Jun 1;45(11):5032-8. doi: 10.1021/es104235v. Epub 2011 May 10.
A membrane carbonation (MC) module uses bubbleless gas-transfer membranes to supply inorganic carbon (C(i)) for photoautotrophic cyanobacterial growth in a photobioreactor (PBR); this creates the novel MCPBR system, which allows precise control of the CO(2)-delivery rate and minimal loss of CO(2) to the atmosphere. Experiments controlled the supply rate of C(i) to the main PBR by regulating the recirculation rate (Q(R)) between the module of MC chamber and the main PBR. The experiments evaluated how Q(R) controls the CO(2) mass transport in MC chamber and how it connects with the biomass production rate, C(i) concentration, pH in the PBR, and CO(2)-utilization efficiency. The biomass production rate and C(i) concentration increased in response to the C(i) supply rate (controlled by Q(R)), but not in linear proportion. The biomass production rate increased less than C(i) due to increased light limitation. Except for the highest Q(R), when the higher C(i) concentration caused the pH to decrease, CO(2) loss to gas ventilation was negligible. The results demonstrate that this MCPBR offers independent control over the growth of photoautotrophic biomass, pH control, and minimal loss of CO(2) to the atmosphere.
膜碳化(MC)模块使用无气泡气体传输膜为光生物反应器(PBR)中的光自养蓝细菌生长提供无机碳(C(i));这创造了新颖的 MCPBR 系统,允许精确控制 CO(2)输送速率,并且将 CO(2)最小化损失到大气中。实验通过调节 MC 室模块和主 PBR 之间的再循环率(Q(R))来控制 C(i)向主 PBR 的供应速率。实验评估了 Q(R)如何控制 MC 室中的 CO(2)传质,以及它如何与生物量生产速率、C(i)浓度、PBR 中的 pH 和 CO(2)利用率相关联。生物量生产速率和 C(i)浓度响应 C(i)供应速率(由 Q(R)控制)而增加,但不是成线性比例增加。由于光限制增加,生物量生产速率的增加小于 C(i)。除了最高的 Q(R)外,当较高的 C(i)浓度导致 pH 下降时,CO(2)通过气体通风损失可以忽略不计。结果表明,这种 MCPBR 提供了对光自养生物量的生长、pH 控制和 CO(2)最小化损失到大气中的独立控制。