Suppr超能文献

铁蛋白的铁矿物质化在 MOPS 和咪唑缓冲液中通过不同的机制进行。

Ferritin iron mineralization proceeds by different mechanisms in MOPS and imidazole buffers.

机构信息

Department of Chemistry and Biochemistry, C-210 Benson Building, Brigham Young University, Provo, UT 84602, United States.

出版信息

J Inorg Biochem. 2011 Jul;105(7):972-7. doi: 10.1016/j.jinorgbio.2011.04.003. Epub 2011 Apr 16.

Abstract

The buffer used during horse spleen ferritin iron loading significantly influences the mineralization process and the quantity of iron deposited in ferritin. Ferritin iron loading in imidazole shows a rapid hyperbolic curve in contrast to iron loading in 3-(N-morpholino)propanesulfonic acid (MOPS), which displays a slower sigmoidal curve. Ferritin iron loading in an equimolar mixture of imidazole and MOPS produces an iron-loading curve that is intermediate between the imidazole and MOPS curves indicating that one buffer does not dominate the reaction mechanism. The UV-visible spectrum of the ferritin mineral has a higher absorbance from 250 to 450 nm when prepared in imidazole buffer than in MOPS buffer. These results suggest that different mineral phases form in ferritin by different loading mechanisms in imidazole and MOPS buffered reactions. Samples of 1500 Fe/ferritin were prepared in MOPS or imidazole buffer and were analyzed for crystallinity and using the electron diffraction capabilities of the electron microscope. The sample prepared in imidazole was significantly more crystalline than the sample prepared in MOPS. X-ray powder diffraction studies showed that small cores (~500 Fe/ferritin) prepared in MOPS or imidazole possess a 2-line ferrihydrite spectrum. As the core size increases the mineral phase begins to change from 2-line to 6-line ferrihydrite with the imidazole sample favoring the 6-line ferrihydrite phase. Taken together, these results suggest that the iron deposition mechanism in ferritin can be controlled by properties of the buffer with samples prepared in imidazole forming a larger, more ordered crystalline mineral than samples prepared in MOPS.

摘要

在马脾铁蛋白铁加载过程中使用的缓冲液会显著影响矿化过程和铁在铁蛋白中的沉积量。与在 3-(N-吗啉)丙磺酸(MOPS)中加载铁相比,在咪唑中加载铁显示出快速的双曲线曲线,而在 MOPS 中加载铁则显示出较慢的 S 形曲线。在咪唑和 MOPS 的等摩尔混合物中加载铁蛋白会产生一种介于咪唑和 MOPS 曲线之间的铁加载曲线,表明一种缓冲液不会主导反应机制。在咪唑缓冲液中制备的铁蛋白矿物的紫外-可见光谱在 250 到 450nm 之间具有更高的吸光度,而在 MOPS 缓冲液中则较低。这些结果表明,在咪唑和 MOPS 缓冲反应中,通过不同的加载机制在铁蛋白中形成了不同的矿物相。在 MOPS 或咪唑缓冲液中制备了 1500Fe/铁蛋白的样品,并对其结晶度进行了分析,并利用电子显微镜的电子衍射能力进行了分析。在咪唑中制备的样品比在 MOPS 中制备的样品明显更具结晶性。X 射线粉末衍射研究表明,在 MOPS 或咪唑中制备的较小核心(~500Fe/铁蛋白)具有 2 线赤铁矿谱。随着核心尺寸的增加,矿物相开始从 2 线赤铁矿转变为 6 线赤铁矿,而咪唑样品有利于 6 线赤铁矿相。综上所述,这些结果表明,铁蛋白中铁的沉积机制可以通过缓冲液的性质来控制,在咪唑中制备的样品形成的更大、更有序的结晶矿物比在 MOPS 中制备的样品多。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验