Suppr超能文献

基于视频-EEG 分析和自动聚类的精神性非癫痫性发作的临床分类。

Clinical classification of psychogenic non-epileptic seizures based on video-EEG analysis and automatic clustering.

机构信息

Central Hospital of Nancy, Department of Neurology, Nancy Cedex, France.

出版信息

J Neurol Neurosurg Psychiatry. 2011 Sep;82(9):955-60. doi: 10.1136/jnnp.2010.235424. Epub 2011 May 10.

Abstract

BACKGROUND

Psychogenic non-epileptic seizures (PNES) or attacks consist of paroxysmal behavioural changes that resemble an epileptic seizure but are not associated with electrophysiological epileptic changes. They are caused by a psychopathological process and are primarily diagnosed on history and video-EEG. Clinical presentation comprises a wide range of symptoms and signs, which are individually neither totally specific nor sensitive, making positive diagnosis of PNES difficult. Consequently, PNES are often misdiagnosed as epilepsy. The aim of this study was to identify homogeneous groups of PNES based on specific combinations of clinical signs with a view to improving timely diagnosis.

METHODS

The authors first retrospectively analysed 22 clinical signs of 145 PNES recorded by video-EEG in 52 patients and then conducted a multiple correspondence analysis and hierarchical cluster analysis.

RESULTS

Five clusters of signs were identified and named according to their main clinical features: dystonic attack with primitive gestural activity (31.6%); pauci-kinetic attack with preserved responsiveness (23.4%); pseudosyncope (16.9%); hyperkinetic prolonged attack with hyperventilation and auras (11.7%); axial dystonic prolonged attack (16.4%). When several attacks were recorded in the same patient, they were automatically classified in the same subtype in 61.5% of patients.

CONCLUSION

This study proposes an objective clinical classification of PNES based on automatic clustering of clinical signs observed on video-EEG. It also suggests that PNES are stereotyped in the same patient. Application of these findings could help provide an objective diagnosis of patients with PNES.

摘要

背景

心因性非癫痫性发作(PNES)或发作由阵发性行为改变组成,类似于癫痫发作,但与电生理癫痫变化无关。它们是由心理病理过程引起的,主要通过病史和视频-脑电图诊断。临床表现包括广泛的症状和体征,这些症状和体征个体既不是完全特异的,也不是敏感的,使得 PNES 的阳性诊断变得困难。因此,PNES 经常被误诊为癫痫。本研究的目的是根据特定的临床体征组合来识别具有相似表现的 PNES 同质组,以期改善及时诊断。

方法

作者首先回顾性分析了 52 例患者的视频-脑电图记录的 145 例 PNES 的 22 种临床体征,然后进行了多元对应分析和层次聚类分析。

结果

确定了 5 个标志集群,并根据其主要临床特征命名:伴有原始姿势活动的肌张力障碍发作(31.6%);伴有反应性保留的少动性发作(23.4%);假性晕厥(16.9%);伴有过度通气和先兆的多动性延长发作(11.7%);轴向肌张力障碍延长发作(16.4%)。当同一患者记录了几次发作时,61.5%的患者会自动将其分类到同一亚型。

结论

本研究提出了一种基于视频-脑电图观察到的临床体征自动聚类的客观的 PNES 临床分类。它还表明,同一患者的 PNES 具有刻板性。这些发现的应用可以帮助对 PNES 患者进行客观诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验