Suppr超能文献

深度门控赫布预测编码解释了视觉皮层层次结构中复杂神经反应特性的出现。

Deep Gated Hebbian Predictive Coding Accounts for Emergence of Complex Neural Response Properties Along the Visual Cortical Hierarchy.

作者信息

Dora Shirin, Bohte Sander M, Pennartz Cyriel M A

机构信息

Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.

Intelligent Systems Research Centre, Ulster University, Londonderry, United Kingdom.

出版信息

Front Comput Neurosci. 2021 Jul 28;15:666131. doi: 10.3389/fncom.2021.666131. eCollection 2021.

Abstract

Predictive coding provides a computational paradigm for modeling perceptual processing as the construction of representations accounting for causes of sensory inputs. Here, we developed a scalable, deep network architecture for predictive coding that is trained using a gated Hebbian learning rule and mimics the feedforward and feedback connectivity of the cortex. After training on image datasets, the models formed latent representations in higher areas that allowed reconstruction of the original images. We analyzed low- and high-level properties such as orientation selectivity, object selectivity and sparseness of neuronal populations in the model. As reported experimentally, image selectivity increased systematically across ascending areas in the model hierarchy. Depending on the strength of regularization factors, sparseness also increased from lower to higher areas. The results suggest a rationale as to why experimental results on sparseness across the cortical hierarchy have been inconsistent. Finally, representations for different object classes became more distinguishable from lower to higher areas. Thus, deep neural networks trained using a gated Hebbian formulation of predictive coding can reproduce several properties associated with neuronal responses along the visual cortical hierarchy.

摘要

预测编码提供了一种计算范式,用于将感知处理建模为构建能够解释感觉输入原因的表征。在此,我们开发了一种用于预测编码的可扩展深度网络架构,该架构使用门控赫布学习规则进行训练,并模仿了皮层的前馈和反馈连接。在图像数据集上进行训练后,模型在更高层次区域形成了潜在表征,从而能够重建原始图像。我们分析了模型中神经元群体的低级和高级属性,如方向选择性、对象选择性和稀疏性。正如实验所报道的那样,图像选择性在模型层次结构的上升区域中系统地增加。根据正则化因子的强度,稀疏性也从较低区域到较高区域增加。这些结果为为何跨皮层层次结构的稀疏性实验结果不一致提供了一个理论依据。最后,不同对象类别的表征从较低区域到较高区域变得更具可区分性。因此,使用预测编码的门控赫布公式训练的深度神经网络可以重现与沿视觉皮层层次结构的神经元反应相关的几种属性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5630/8355371/b32588df4fb9/fncom-15-666131-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验