Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación, 46022 Valencia, Spain.
Plant Physiol. 2011 Jul;156(3):1410-23. doi: 10.1104/pp.111.177741. Epub 2011 May 11.
The transition from etiolated to green seedlings involves a shift from hypocotyl growth-promoting conditions to growth restraint. These changes occur through a complex light-driven process involving multiple and tightly coordinated hormonal signaling pathways. Nitric oxide (NO) has been lately characterized as a regulator of plant development interacting with hormone signaling. Here, we show that Arabidopsis (Arabidopsis thaliana) NO-deficient mutant hypocotyls are longer than those from wild-type seedlings under red light but not under blue or far-red light. Accordingly, exogenous treatment with the NO donor sodium nitroprusside and mutant plants with increased endogenous NO levels resulted in reduced hypocotyl length. In addition to increased hypocotyl elongation, NO deficiency led to increased anthocyanin levels and reduced PHYB content under red light, all processes governed by phytochrome-interacting factors (PIFs). NO-deficient plants accordingly showed an enhanced expression of PIF3, PIF1, and PIF4. Moreover, exogenous NO increased the levels of the gibberellin (GA)-regulated DELLA proteins and shortened hypocotyls, likely through the negative regulation of the GA Insensitive Dwarf1 (GID1)-Sleepy1 (SLY1) module. Consequently, NO-deficient seedlings displayed up-regulation of SLY1, defective DELLA accumulation, and altered GA sensitivity, thus resulting in defective deetiolation under red light. Accumulation of NO in wild-type seedlings undergoing red light-triggered deetiolation and elevated levels of NO in the GA-deficient ga1-3 mutant in darkness suggest a mutual NO-GA antagonism in controlling photomorphogenesis. PHYB-dependent NO production promotes photomorphogenesis by a GID1-GA-SLY1-mediated mechanism based on the coordinated repression of growth-promoting PIF genes and the increase in the content of DELLA proteins.
从黄化幼苗到绿色幼苗的转变涉及从促进下胚轴生长的条件到生长抑制的转变。这些变化是通过一个复杂的光驱动过程发生的,涉及多个紧密协调的激素信号通路。一氧化氮(NO)最近被描述为与激素信号相互作用的植物发育调节剂。在这里,我们表明拟南芥(Arabidopsis thaliana)NO 缺陷突变体的下胚轴在红光下比野生型幼苗的下胚轴长,但在蓝光或远红光下则不然。因此,外源施用一氧化氮供体硝普钠和内源 NO 水平增加的突变体植物导致下胚轴长度缩短。除了下胚轴伸长增加外,NO 缺乏还导致在红光下花青素水平升高和 PHYB 含量降低,所有这些过程都受光敏色素相互作用因子(PIFs)调控。NO 缺陷型植物相应地表现出 PIF3、PIF1 和 PIF4 的表达增强。此外,外源 NO 增加了赤霉素(GA)调节的 DELLA 蛋白的水平并缩短了下胚轴,这可能是通过负调控 GA 不敏感矮化 1(GID1)-Sleepy1(SLY1)模块实现的。因此,NO 缺陷型幼苗表现出 SLY1 的上调表达、DELLA 积累缺陷和 GA 敏感性改变,从而导致在红光下脱黄化缺陷。在红光触发脱黄化的野生型幼苗中积累的 NO 和在黑暗中 GA 缺陷 ga1-3 突变体中升高的 NO 水平表明,NO-GA 在控制光形态发生中存在相互拮抗作用。基于对促进生长的 PIF 基因的协调抑制和 DELLA 蛋白含量的增加,PHYB 依赖性的 NO 产生通过 GID1-GA-SLY1 介导的机制促进光形态发生。