Suppr超能文献

基于 DNA 条码和平行焦磷酸测序的饮食分析新视角:trnL 方法。

New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach.

机构信息

Laboratoire d'Ecologie Alpine, CNRS UMR 5553, Université Joseph Fourier, BP 53, F-38041 Grenoble cedex 9, France.

出版信息

Mol Ecol Resour. 2009 Jan;9(1):51-60. doi: 10.1111/j.1755-0998.2008.02352.x. Epub 2008 Oct 22.

Abstract

The development of DNA barcoding (species identification using a standardized DNA sequence), and the availability of recent DNA sequencing techniques offer new possibilities in diet analysis. DNA fragments shorter than 100-150 bp remain in a much higher proportion in degraded DNA samples and can be recovered from faeces. As a consequence, by using universal primers that amplify a very short but informative DNA fragment, it is possible to reliably identify the plant taxon that has been eaten. According to our experience and using this identification system, about 50% of the taxa can be identified to species using the trnL approach, that is, using the P6 loop of the chloroplast trnL (UAA) intron. We demonstrated that this new method is fast, simple to implement, and very robust. It can be applied for diet analyses of a wide range of phytophagous species at large scales. We also demonstrated that our approach is efficient for mammals, birds, insects and molluscs. This method opens new perspectives in ecology, not only by allowing large-scale studies on diet, but also by enhancing studies on resource partitioning among competing species, and describing food webs in ecosystems.

摘要

DNA 条码技术(使用标准化 DNA 序列进行物种鉴定)的发展以及最近 DNA 测序技术的可用性,为饮食分析提供了新的可能性。短于 100-150bp 的 DNA 片段在降解的 DNA 样本中仍然保留着更高的比例,并可以从粪便中回收。因此,使用通用引物扩增非常短但信息量丰富的 DNA 片段,可以可靠地识别出被食用的植物分类群。根据我们的经验,并使用这种识别系统,大约 50%的类群可以使用 trnL 方法(即使用叶绿体 trnL(UAA)内含子的 P6 环)鉴定到种。我们证明了这种新方法快速、简单且非常稳健。它可以应用于大规模的各种植食性物种的饮食分析。我们还证明,我们的方法对哺乳动物、鸟类、昆虫和软体动物都有效。这种方法在生态学方面开辟了新的前景,不仅可以允许对饮食进行大规模研究,还可以增强对竞争物种之间资源划分的研究,并描述生态系统中的食物网。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验