Suppr超能文献

畸变产物耳声发射相位的水平依赖性归因于分量混合。

Level dependence of distortion product otoacoustic emission phase is attributed to component mixing.

机构信息

Division of Communication and Auditory Neuroscience, House Research Institute, 2100 West Third Street, Los Angeles, California 90057, USA.

出版信息

J Acoust Soc Am. 2011 May;129(5):3123-33. doi: 10.1121/1.3573992.

Abstract

Distortion product otoacoustic emissions (DPOAEs) measured in the ear canal represent the vector sum of components produced at two regions of the basilar membrane by distinct cochlear mechanisms. In this study, the effect of stimulus level on the 2f(1) - f(2) DPOAE phase was evaluated in 22 adult subjects across a three-octave range. Level effects were examined for the mixed DPOAE signal measured in the ear canal and after unmixing components to assess level effects individually on the distortion (generated at the f(1), f(2) overlap) and reflection (at f(dp)) sources. Results show that ear canal DPOAE phase slope becomes steeper with decreasing level; however, component analysis further explicates this result, indicating that interference between DPOAE components (rather than a shift in mechanics related to distortion generation) drives the level dependence of DPOAE phase measured in the ear canal. The relative contribution from the reflection source increased with decreasing level, producing more component interference and, at times, a reflection-dominated response at the lowest stimulus levels. These results have implications for the use of DPOAE phase to study cochlear mechanics and for the potential application of DPOAE phase for clinical purposes.

摘要

耳声发射的失真产物(DPOAE)在耳道中测量的结果代表了基底膜两个区域由不同耳蜗机制产生的分量的矢量和。在这项研究中,我们在三个倍频程范围内评估了刺激水平对 2f(1) - f(2) DPOAE 相位的影响。对在耳道中测量的混合 DPOAE 信号和去混合成分后评估单个成分的水平效应,以分别评估失真(在 f(1)、f(2)重叠处产生)和反射(在 f(dp)处)源的水平效应。结果表明,随着刺激水平的降低,耳道 DPOAE 相位斜率变得更陡;然而,成分分析进一步解释了这一结果,表明 DPOAE 成分之间的干扰(而不是与失真产生相关的力学变化)导致了在耳道中测量的 DPOAE 相位的水平依赖性。随着刺激水平的降低,反射源的相对贡献增加,产生更多的成分干扰,有时在最低刺激水平下产生以反射为主的反应。这些结果对使用 DPOAE 相位研究耳蜗力学以及将 DPOAE 相位潜在应用于临床目的具有重要意义。

相似文献

2
Breaking away: violation of distortion emission phase-frequency invariance at low frequencies.
J Acoust Soc Am. 2011 May;129(5):3115-22. doi: 10.1121/1.3569732.
3
The influence of common stimulus parameters on distortion product otoacoustic emission fine structure.
Ear Hear. 2012 Mar-Apr;33(2):239-49. doi: 10.1097/AUD.0b013e3182321da4.
4
Characterizing distortion-product otoacoustic emission components across four species.
J Acoust Soc Am. 2011 May;129(5):3090-103. doi: 10.1121/1.3560123.
5
Distortion product otoacoustic emission phase and component analysis in human newborns.
J Acoust Soc Am. 2010 Jan;127(1):316-25. doi: 10.1121/1.3268611.
6
The breaking of cochlear scaling symmetry in human newborns and adults.
J Acoust Soc Am. 2011 May;129(5):3104-14. doi: 10.1121/1.3569737.
7
Generation of DPOAEs in the guinea pig.
Hear Res. 2003 Apr;178(1-2):106-17. doi: 10.1016/s0378-5955(03)00064-9.
8
Multiple internal reflections in the cochlea and their effect on DPOAE fine structure.
J Acoust Soc Am. 2002 Dec;112(6):2882-97. doi: 10.1121/1.1516757.
9
Extraction of sources of distortion product otoacoustic emissions by onset-decomposition.
Hear Res. 2009 Oct;256(1-2):21-38. doi: 10.1016/j.heares.2009.06.002. Epub 2009 Jun 10.

引用本文的文献

1
Whole Stimulus DPOAE Analysis.
AIP Conf Proc. 2024 Feb 27;3062(1). doi: 10.1063/5.0189403.
2
Extended low-frequency phase of the distortion-product otoacoustic emission in human newborns.
JASA Express Lett. 2021 Jan;1(1):014404. doi: 10.1121/10.0003192.
3
A cochlea with three parts? Evidence from otoacoustic emission phase in humans.
J Acoust Soc Am. 2020 Sep;148(3):1585. doi: 10.1121/10.0001920.
4
Morphological Immaturity of the Neonatal Organ of Corti and Associated Structures in Humans.
J Assoc Res Otolaryngol. 2019 Oct;20(5):461-474. doi: 10.1007/s10162-019-00734-2. Epub 2019 Aug 12.
8
Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
Hear Res. 2015 Sep;327:186-98. doi: 10.1016/j.heares.2015.07.017. Epub 2015 Jul 29.
9
Stability of the medial olivocochlear reflex as measured by distortion product otoacoustic emissions.
J Speech Lang Hear Res. 2015 Feb;58(1):122-34. doi: 10.1044/2014_JSLHR-H-14-0013.
10
Maturation and aging of the human cochlea: a view through the DPOAE looking glass.
J Assoc Res Otolaryngol. 2012 Jun;13(3):403-21. doi: 10.1007/s10162-012-0319-2. Epub 2012 Apr 3.

本文引用的文献

1
Evidence for basal distortion-product otoacoustic emission components.
J Acoust Soc Am. 2010 May;127(5):2955-72. doi: 10.1121/1.3353121.
2
Otoacoustic estimation of cochlear tuning: validation in the chinchilla.
J Assoc Res Otolaryngol. 2010 Sep;11(3):343-65. doi: 10.1007/s10162-010-0217-4. Epub 2010 May 4.
3
Distortion product otoacoustic emission phase and component analysis in human newborns.
J Acoust Soc Am. 2010 Jan;127(1):316-25. doi: 10.1121/1.3268611.
5
Measuring distortion product otoacoustic emissions using continuously sweeping primaries.
J Acoust Soc Am. 2008 Sep;124(3):1613-26. doi: 10.1121/1.2949505.
6
Transient evoked otoacoustic emission latency and cochlear tuning at different stimulus levels.
J Acoust Soc Am. 2007 Oct;122(4):2183-90. doi: 10.1121/1.2769981.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验