Suppr超能文献

扫频刺激声频耳声发射:正常数据和方法学考虑。

Swept-tone stimulus-frequency otoacoustic emissions: Normative data and methodological considerations.

机构信息

Caruso Department of Otolaryngology, Auditory Research Center, University of Southern California, 1640 Marengo Street, Suite 326, Los Angeles, California 90033, USA.

出版信息

J Acoust Soc Am. 2018 Jan;143(1):181. doi: 10.1121/1.5020275.

Abstract

Stimulus-frequency otoacoustic emissions (SFOAEs) are reflection-source emissions, and are the least familiar and perhaps most underutilized otoacoustic emission. Here, normative SFOAE data are presented from a large group of 48 young adults at probe levels from 20 to 60 dB sound pressure level (SPL) across a four-octave frequency range to characterize the typical SFOAE and describe recent methodological advances that have made its measurement more efficient. In young-adult ears, SFOAE levels peaked in the low-to-mid frequencies at mean levels of ∼6-7 dB SPL while signal-to-noise ranged from 23 to 34 dB SPL and test-retest reliability was ±4 dB for 90% of the SFOAE data. On average, females had ∼2.5 dB higher SFOAE levels than males. SFOAE input/output functions showed near linear growth at low levels and a compression threshold averaging 35 dB SPL across frequency. SFOAE phase accumulated ∼32-36 cycles across four octaves on average, and showed level effects when converted to group delay: low-level probes produced longer SFOAE delays. A "break" in the normalized SFOAE delay was observed at 1.1 kHz on average, elucidating the location of the putative apical-basal transition. Technical innovations such as the concurrent sweeping of multiple frequency segments, post hoc suppressor decontamination, and a post hoc artifact-rejection technique were tested.

摘要

刺激频率耳声发射(SFOAEs)是反射源发射,是最不熟悉、或许也是最未充分利用的耳声发射。这里呈现了来自一大组 48 位年轻成年人的规范 SFOAE 数据,这些数据在 20 至 60 分贝声压级(SPL)的探测水平下,跨越四个倍频程频率范围,用于描述典型的 SFOAE,并介绍了最近使 SFOAE 测量更高效的方法学进展。在年轻成年人的耳朵中,SFOAE 水平在低频至中频处达到峰值,平均水平约为 6-7dB SPL,而信号噪声比为 23 至 34dB SPL,90%的 SFOAE 数据的测试-重测可靠性为±4dB。平均而言,女性的 SFOAE 水平比男性高约 2.5dB。SFOAE 的输入/输出函数在低水平时呈现近线性增长,压缩阈值平均为 35dB SPL 跨频率。SFOAE 相位在四个倍频程中平均累积 32-36 个周期,并且当转换为群延迟时显示出水平效应:低水平探针产生更长的 SFOAE 延迟。在平均约 1.1kHz 处观察到归一化 SFOAE 延迟的“中断”,阐明了假定的顶底转换的位置。同时扫描多个频率段、事后抑制器净化和事后伪影剔除技术等技术创新已被测试。

相似文献

2
Influence of stimulus parameters on amplitude-modulated stimulus frequency otoacoustic emissions.
J Acoust Soc Am. 2013 Aug;134(2):1121-33. doi: 10.1121/1.4812766.
3
Audiometric predictions using stimulus-frequency otoacoustic emissions and middle ear measurements.
Ear Hear. 2005 Oct;26(5):487-503. doi: 10.1097/01.aud.0000179692.81851.3b.
4
Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans.
J Assoc Res Otolaryngol. 2017 Feb;18(1):89-110. doi: 10.1007/s10162-016-0588-2. Epub 2016 Sep 28.
6
Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
Neurosci Lett. 2014 Jan 24;559:132-5. doi: 10.1016/j.neulet.2013.11.059. Epub 2013 Dec 10.
7
Deep Learning Models for Predicting Hearing Thresholds Based on Swept-Tone Stimulus-Frequency Otoacoustic Emissions.
Ear Hear. 2024;45(2):465-475. doi: 10.1097/AUD.0000000000001443. Epub 2023 Nov 22.
9
Swept-Tone Stimulus-Frequency Otoacoustic Emissions in Human Newborns.
Trends Hear. 2019 Jan-Dec;23:2331216519889226. doi: 10.1177/2331216519889226.
10
Suppression of stimulus frequency otoacoustic emissions by contralateral noise.
Hear Res. 1995 Nov;91(1-2):167-77. doi: 10.1016/0378-5955(95)00187-5.

引用本文的文献

1
Sources of Microstructure in Mammalian Cochlear Responses.
J Assoc Res Otolaryngol. 2025 Feb;26(1):1-15. doi: 10.1007/s10162-025-00974-5. Epub 2025 Jan 29.
2
Detection of mild sensory hearing loss using a joint reflection-distortion otoacoustic emission profile.
J Acoust Soc Am. 2024 Oct 1;156(4):2220-2236. doi: 10.1121/10.0030399.
3
Does Endolymphatic Hydrops Shift the Cochlear Tonotopic Map?
AIP Conf Proc. 2024 Feb 27;3062(1). doi: 10.1063/5.0189381.
4
Swept Along: Measuring Otoacoustic Emissions Using Continuously Varying Stimuli.
J Assoc Res Otolaryngol. 2024 Apr;25(2):91-102. doi: 10.1007/s10162-024-00934-5. Epub 2024 Feb 26.
5
Characterizing a Joint Reflection-Distortion OAE Profile in Humans With Endolymphatic Hydrops.
Ear Hear. 2023;44(6):1437-1450. doi: 10.1097/AUD.0000000000001387. Epub 2023 Jul 14.
6
Auditory Deprivation during Development Alters Efferent Neural Feedback and Perception.
J Neurosci. 2023 Jun 21;43(25):4642-4649. doi: 10.1523/JNEUROSCI.2182-22.2023. Epub 2023 May 23.
7
Characterizing the Relationship Between Reflection and Distortion Otoacoustic Emissions in Normal-Hearing Adults.
J Assoc Res Otolaryngol. 2022 Oct;23(5):647-664. doi: 10.1007/s10162-022-00857-z. Epub 2022 Jul 8.
8
Reflection-Source Emissions Evoked with Clicks and Frequency Sweeps: Comparisons Across Levels.
J Assoc Res Otolaryngol. 2021 Dec;22(6):641-658. doi: 10.1007/s10162-021-00813-3. Epub 2021 Oct 4.
9
A cochlea with three parts? Evidence from otoacoustic emission phase in humans.
J Acoust Soc Am. 2020 Sep;148(3):1585. doi: 10.1121/10.0001920.

本文引用的文献

2
High-Frequency Distortion-Product Otoacoustic Emission Repeatability in a Patient Population.
Ear Hear. 2018 Jan/Feb;39(1):85-100. doi: 10.1097/AUD.0000000000000465.
3
Characterizing spontaneous otoacoustic emissions across the human lifespan.
J Acoust Soc Am. 2017 Mar;141(3):1874. doi: 10.1121/1.4977192.
4
Distortion-Product Otoacoustic Emission Measured Below 300 Hz in Normal-Hearing Human Subjects.
J Assoc Res Otolaryngol. 2017 Apr;18(2):197-208. doi: 10.1007/s10162-016-0600-x. Epub 2016 Nov 21.
5
Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans.
J Assoc Res Otolaryngol. 2017 Feb;18(1):89-110. doi: 10.1007/s10162-016-0588-2. Epub 2016 Sep 28.
7
Time-frequency decomposition of click evoked otoacoustic emissions in children.
Hear Res. 2016 May;335:161-178. doi: 10.1016/j.heares.2016.03.003. Epub 2016 Mar 11.
10
Exploration of stimulus-frequency otoacoustic emission suppression tuning in hearing-impaired listeners.
Int J Audiol. 2015 Feb;54(2):96-105. doi: 10.3109/14992027.2014.941074. Epub 2014 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验