Suppr超能文献

动物群体大小分布的第一性原理推导。

A first principles derivation of animal group size distributions.

机构信息

Mathematics Department, Uppsala University, Box 480, 751 06 Uppsala, Sweden.

出版信息

J Theor Biol. 2011 Aug 21;283(1):35-43. doi: 10.1016/j.jtbi.2011.04.031. Epub 2011 May 8.

Abstract

Several empirical studies have shown that the animal group size distribution of many species can be well fit by power laws with exponential truncation. A striking empirical result due to Niwa is that the exponent in these power laws is one and the truncation is determined by the average group size experienced by an individual. This distribution is known as the logarithmic distribution. In this paper we provide first principles derivation of the logarithmic distribution and other truncated power laws using a site-based merge and split framework. In particular, we investigate two such models. Firstly, we look at a model in which groups merge whenever they meet but split with a constant probability per time step. This generates a distribution similar, but not identical to the logarithmic distribution. Secondly, we propose a model, based on preferential attachment, that produces the logarithmic distribution exactly. Our derivation helps explain why logarithmic distributions are so widely observed in nature. The derivation also allows us to link splitting and joining behavior to the exponent and truncation parameters in power laws.

摘要

已有几项实证研究表明,许多物种的动物群体规模分布可以很好地用具有指数截断的幂律来拟合。Niwa 的一个引人注目的实证结果是,这些幂律中的指数为 1,截断由个体经历的平均群体大小决定。这种分布被称为对数分布。在本文中,我们使用基于站点的合并和分裂框架,从第一性原理推导出对数分布和其他截断幂律。具体来说,我们研究了两种这样的模型。首先,我们研究了一种模型,其中只要群体相遇就会合并,但每步都会以固定概率分裂。这会产生与对数分布相似但不完全相同的分布。其次,我们提出了一种基于优先附着的模型,该模型可以产生精确的对数分布。我们的推导有助于解释为什么对数分布在自然界中如此广泛存在。该推导还使我们能够将分裂和合并行为与幂律中的指数和截断参数联系起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验