Suppr超能文献

多回波磁共振图像的相关稀疏联合重建。

Joint reconstruction of multiecho MR images using correlated sparsity.

机构信息

Department of Electrical and Computer Engineering, University of British Columbia, Kaiser 2010, Vancouver, BC, Canada V6T1Z4.

出版信息

Magn Reson Imaging. 2011 Sep;29(7):899-906. doi: 10.1016/j.mri.2011.03.008. Epub 2011 May 14.

Abstract

This works addresses the problem of reconstructing multiple T1- or T2-weighted images of the same anatomical cross section from partially sampled K-space data. Previous studies in reconstructing magnetic resonance (MR) images from partial samples of the K-space used compressed sensing (CS) techniques to exploit the spatial correlation of the images (leading to sparsity in wavelet domain). Such techniques can be employed to reconstruct the individual T1- or T2-weighted images. However, in the current context, the different images are not really independent; they are images of the same cross section and, hence, are highly correlated. We exploit the correlation between the images, along with the spatial correlation within the images to achieve better reconstruction results than exploiting spatial correlation only. For individual MR images, CS-based techniques lead to a sparsity-promoting optimization problem in the wavelet domain. In this article, we show that the same framework can be extended to incorporate correlation between images leading to group/row sparsity-promoting optimization. Algorithms for solving such optimization problems have already been developed in the CS literature. We show that significant improvement in reconstruction accuracy can be achieved by considering the correlation between different T1- and T2-weighted images. If the reconstruction accuracy is considered to be constant, our proposed group sparse formulation can yield the same result with 33% less K-space samples compared with simple sparsity-promoting reconstruction. Moreover, the reconstruction time by our proposed method is about two to four times less than the previous method.

摘要

本文针对从部分 K 空间数据重建相同解剖横截面上多个 T1 或 T2 加权图像的问题。之前在从 K 空间的部分样本重建磁共振(MR)图像的研究中,使用压缩感知(CS)技术利用图像的空间相关性(导致小波域中的稀疏性)。这些技术可用于重建各个 T1 或 T2 加权图像。然而,在当前的情况下,不同的图像并不是真正独立的;它们是同一横截面上的图像,因此具有高度相关性。我们利用图像之间的相关性以及图像内部的空间相关性,以获得比仅利用空间相关性更好的重建结果。对于单个 MR 图像,基于 CS 的技术会导致在小波域中促进稀疏性的优化问题。在本文中,我们表明可以扩展相同的框架以纳入图像之间的相关性,从而促进群组/行稀疏性促进优化。CS 文献中已经开发了用于解决此类优化问题的算法。我们表明,通过考虑不同的 T1 和 T2 加权图像之间的相关性,可以显著提高重建准确性。如果将重建准确性视为常数,与简单的稀疏性促进重建相比,我们提出的群组稀疏公式可以用 33%的更少 K 空间样本获得相同的结果。此外,我们提出的方法的重建时间比以前的方法少两到四倍。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验