Huang Junzhou, Chen Chen, Axel Leon
Department of Computer Science and Engineering, University of Texas at Arlington, TX 76019, USA.
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):281-8. doi: 10.1007/978-3-642-33415-3_35.
This paper proposes an efficient algorithm to simultaneously reconstruct multiple T1/T2-weighted images of the same anatomical cross section from partially sampled k-space data. The simultaneous reconstruction problem is formulated as minimizing a linear combination of three terms corresponding to a least square data fitting, joint total-variation (TV) and group wavelet-sparsity regularization. It is rooted in two observations: (1) the variance of image gradients should be similar for the same spatial position across multiple contrasts; (2) the wavelet coefficients of all images from the same anatomical cross section should have similar sparse modes. To efficiently solve this formulation, we decompose it into group sparsity and joint TV regularization subproblems, respectively. Finally, the reconstructed image is obtained from the weighted average of solutions from two subproblems in an iterative framework. We compare the proposed algorithm with previous methods on SRT24 multi-channel Brain Atlas Data. Experiments demonstrate its superior performance for multi-contrast MR image reconstruction.
本文提出了一种高效算法,用于从部分采样的k空间数据中同时重建同一解剖横截面的多个T1/T2加权图像。同时重建问题被表述为最小化对应于最小二乘数据拟合、联合全变差(TV)和组小波稀疏正则化的三项线性组合。它基于两个观察结果:(1)跨多个对比度,相同空间位置处图像梯度的方差应相似;(2)来自同一解剖横截面的所有图像的小波系数应具有相似的稀疏模式。为了有效求解此公式,我们分别将其分解为组稀疏和联合TV正则化子问题。最后,在迭代框架中从两个子问题的解的加权平均值获得重建图像。我们在SRT24多通道脑图谱数据上,将所提出的算法与先前方法进行了比较。实验证明了其在多对比度MR图像重建方面的优越性能。