Suppr超能文献

增长分层概率自组织图。

Growing hierarchical probabilistic self-organizing graphs.

作者信息

López-Rubio Ezequiel, Palomo Esteban José

机构信息

Department of Computer Languages and Computer Science, University of Málaga, Málaga, Spain.

出版信息

IEEE Trans Neural Netw. 2011 Jul;22(7):997-1008. doi: 10.1109/TNN.2011.2138159. Epub 2011 May 12.

Abstract

Since the introduction of the growing hierarchical self-organizing map, much work has been done on self-organizing neural models with a dynamic structure. These models allow adjusting the layers of the model to the features of the input dataset. Here we propose a new self-organizing model which is based on a probabilistic mixture of multivariate Gaussian components. The learning rule is derived from the stochastic approximation framework, and a probabilistic criterion is used to control the growth of the model. Moreover, the model is able to adapt to the topology of each layer, so that a hierarchy of dynamic graphs is built. This overcomes the limitations of the self-organizing maps with a fixed topology, and gives rise to a faithful visualization method for high-dimensional data.

摘要

自从引入不断增长的分层自组织映射以来,在具有动态结构的自组织神经模型方面已经开展了大量工作。这些模型允许根据输入数据集的特征调整模型的层数。在此,我们提出一种基于多元高斯分量概率混合的新自组织模型。学习规则源自随机逼近框架,并使用概率准则来控制模型的增长。此外,该模型能够适应每一层的拓扑结构,从而构建出动态图的层次结构。这克服了具有固定拓扑结构的自组织映射的局限性,并产生了一种用于高维数据的可靠可视化方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验