Suppr超能文献

基于体素的双时相 18F-FDG PET 图像分析用于脑肿瘤的识别与勾画。

Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation.

机构信息

Department of Nuclear Medicine, Clínica Universidad de Navarra, Pamplona, Spain.

出版信息

J Nucl Med. 2011 Jun;52(6):865-72. doi: 10.2967/jnumed.110.085324. Epub 2011 May 13.

Abstract

UNLABELLED

We have investigated dual-time-point (18)F-FDG PET for the detection and delineation of high-grade brain tumors using quantitative criteria applied on a voxel basis.

METHODS

Twenty-five patients with suspected high-grade brain tumors and inconclusive MRI findings underwent (11)C-methionine PET and dual-time-point (18)F-FDG PET. Images from each subject were registered and spatially normalized. Parametric maps of standardized uptake value (SUV) and tumor-to-normal gray matter (TN) ratio for each PET image were obtained. Tumor diagnosis was evaluated according to 4 criteria comparing standard and delayed (18)F-FDG PET images: any SUV increase, SUV increase greater than 10%, any TN increase, and TN increase greater than 10%. Voxel-based analysis sensitivity was assessed using (11)C-methionine as a reference and compared with visual and volume-of-interest analysis for dual-time-point PET images. Additionally, volumetric assessment of the tumor extent that fulfills each criterion was compared with the volume defined for (11)C-methionine PET.

RESULTS

The greatest sensitivity for tumor identification was obtained with any increase of TN ratio (100%), followed by a TN increase greater than 10% (96%), any SUV increase (80%), and an SUV increase greater than 10% (60%). These values were superior to visual analysis of standard (18)F-FDG (sensitivity, 40%) and delayed (18)F-FDG PET (sensitivity, 52%). Volume-of-interest analysis of dual-time-point PET reached a sensitivity of only 64% using the TN increase criterion. Regarding volumetry, voxel-based analysis with the TN ratio increase as a criterion, compared with (11)C-methionine PET, detected 55.4% of the tumor volume, with the other criteria detecting volumes lower than 20%. Nevertheless, volume detection presented great variability, being better for metastasis (78%) and glioblastomas (56%) than for anaplastic tumors (12%). A positive correlation was observed between the volume detected and the time of acquisition of the delayed PET image (r = 0.66, P < 0.001), showing volumes greater than 75% when the delayed image was obtained at least 6 h after (18)F-FDG injection.

CONCLUSION

Compared with standard (18)F-FDG PET studies, quantitative dual-time-point (18)F-FDG PET can improve sensitivity for the identification and volume delineation of high-grade brain tumors.

摘要

未加标签

我们使用基于体素的定量标准研究了双时相(18)F-FDG PET 检测和勾画高级别脑肿瘤的能力。

方法

25 例疑似高级别脑肿瘤且 MRI 结果不确定的患者进行了(11)C-蛋氨酸 PET 和双时相(18)F-FDG PET 检查。对每位患者的图像进行配准和空间归一化。获取每个 PET 图像的标准化摄取值(SUV)和肿瘤与正常灰质(TN)比值的参数图。根据比较标准和延迟(18)F-FDG PET 图像的 4 项标准评估肿瘤诊断:任何 SUV 增加、SUV 增加超过 10%、任何 TN 增加、TN 增加超过 10%。使用(11)C-蛋氨酸作为参考评估基于体素的分析敏感性,并与双时相 PET 图像的视觉和感兴趣区分析进行比较。此外,还比较了满足每个标准的肿瘤范围的体积评估与(11)C-蛋氨酸 PET 定义的体积。

结果

肿瘤识别的最大敏感性是通过 TN 比值的任何增加获得的(100%),其次是 TN 增加超过 10%(96%)、任何 SUV 增加(80%)和 SUV 增加超过 10%(60%)。这些值优于标准(18)F-FDG 的视觉分析(敏感性 40%)和延迟(18)F-FDG PET(敏感性 52%)。使用 TN 增加标准的双时相 PET 感兴趣区分析的敏感性仅为 64%。关于体积测量,使用 TN 比增加作为标准的基于体素分析与(11)C-蛋氨酸 PET 相比,检测到 55.4%的肿瘤体积,而其他标准检测到的体积低于 20%。然而,体积检测存在很大的可变性,对转移瘤(78%)和胶质母细胞瘤(56%)的检测优于间变性肿瘤(12%)。检测到的体积与延迟 PET 图像采集时间之间存在正相关关系(r=0.66,P<0.001),当延迟图像在(18)F-FDG 注射后至少 6 小时获得时,检测到的体积大于 75%。

结论

与标准(18)F-FDG PET 研究相比,定量双时相(18)F-FDG PET 可以提高高级别脑肿瘤的识别和体积勾画的敏感性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验