Suppr超能文献

过渡阶段的关键σ因子 SigH 控制艰难梭菌的孢子形成、代谢和毒力因子表达。

The key sigma factor of transition phase, SigH, controls sporulation, metabolism, and virulence factor expression in Clostridium difficile.

机构信息

Laboratoire de Pathogénèse des Bactéries Anaérobies, 75724 Paris Cedex 15, France.

出版信息

J Bacteriol. 2011 Jul;193(13):3186-96. doi: 10.1128/JB.00272-11. Epub 2011 May 13.

Abstract

Toxin synthesis in Clostridium difficile increases as cells enter into stationary phase. We first compared the expression profiles of strain 630E during exponential growth and at the onset of stationary phase and showed that genes involved in sporulation, cellular division, and motility, as well as carbon and amino acid metabolism, were differentially expressed under these conditions. We inactivated the sigH gene, which encodes an alternative sigma factor involved in the transition to post-exponential phase in Bacillus subtilis. Then, we compared the expression profiles of strain 630E and the sigH mutant after 10 h of growth. About 60% of the genes that were differentially expressed between exponential and stationary phases, including genes involved in motility, sporulation, and metabolism, were regulated by SigH, which thus appears to be a key regulator of the transition phase in C. difficile. SigH positively controls several genes required for sporulation. Accordingly, sigH inactivation results in an asporogeneous phenotype. The spo0A and CD2492 genes, encoding the master regulator of sporulation and one of its associated kinases, and the spoIIA operon were transcribed from a SigH-dependent promoter. The expression of tcdA and tcdB, encoding the toxins, and of tcdR, encoding the sigma factor required for toxin production, increased in a sigH mutant. Finally, SigH regulates the expression of genes encoding surface-associated proteins, such as the Cwp66 adhesin, the S-layer precursor, and the flagellum components. Among the 286 genes positively regulated by SigH, about 40 transcriptional units presenting a SigH consensus in their promoter regions are good candidates for direct SigH targets.

摘要

艰难梭菌在进入静止期时会增加毒素的合成。我们首先比较了 630E 菌株在指数生长期和静止期开始时的表达谱,结果表明,在这些条件下,与孢子形成、细胞分裂和运动以及碳和氨基酸代谢相关的基因表达存在差异。我们失活了 sigH 基因,该基因编码一种参与枯草芽孢杆菌进入指数后期的替代 sigma 因子。然后,我们比较了 10 小时生长后 630E 菌株和 sigH 突变体的表达谱。约 60%的在指数期和静止期之间差异表达的基因,包括与运动、孢子形成和代谢相关的基因,受到 SigH 的调控,因此 SigH 似乎是艰难梭菌过渡阶段的关键调控因子。SigH 正向调控几个与孢子形成有关的基因。因此,sigH 失活导致无孢子表型。spo0A 和 CD2492 基因(编码孢子形成的主调控因子及其相关激酶之一)和 spoIIA 操纵子从依赖 SigH 的启动子转录。tcdA 和 tcdB 编码毒素,tcdR 编码毒素产生所需的 sigma 因子,在 sigH 突变体中表达增加。最后,SigH 调节编码表面相关蛋白的基因的表达,如 Cwp66 粘附素、S-层前体和鞭毛成分。在受 SigH 正向调控的 286 个基因中,约 40 个转录单位在其启动子区域具有 SigH 共识,它们是直接 SigH 靶标的候选基因。

相似文献

2
Characterization of the SigD regulon of C. difficile and its positive control of toxin production through the regulation of tcdR.
PLoS One. 2013 Dec 16;8(12):e83748. doi: 10.1371/journal.pone.0083748. eCollection 2013.
4
Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production.
J Bacteriol. 2010 Oct;192(19):4904-11. doi: 10.1128/JB.00445-10. Epub 2010 Jul 30.
5
Multiple factors contribute to bimodal toxin gene expression in Clostridioides (Clostridium) difficile.
Mol Microbiol. 2018 Nov;110(4):533-549. doi: 10.1111/mmi.14107. Epub 2018 Oct 14.
6
Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production.
J Bacteriol. 2009 Dec;191(23):7296-305. doi: 10.1128/JB.00882-09. Epub 2009 Sep 25.
7
The second messenger cyclic Di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD.
J Bacteriol. 2013 Nov;195(22):5174-85. doi: 10.1128/JB.00501-13. Epub 2013 Sep 13.
10
RstA Is a Major Regulator of Clostridioides difficile Toxin Production and Motility.
mBio. 2019 Mar 12;10(2):e01991-18. doi: 10.1128/mBio.01991-18.

引用本文的文献

1
Dissecting the contribution of Kup and KimA to Enterococcus faecalis potassium homeostasis.
Sci Rep. 2025 Jul 25;15(1):27027. doi: 10.1038/s41598-025-06573-x.
3
The sigma factor σ () functions as a global regulator of antibiotic resistance, motility, metabolism, and virulence in .
Front Microbiol. 2025 Apr 29;16:1569627. doi: 10.3389/fmicb.2025.1569627. eCollection 2025.
4
A metabolite dehydrogenase pathway represses sporulation of Clostridioides difficile.
Anaerobe. 2025 Jun;93:102971. doi: 10.1016/j.anaerobe.2025.102971. Epub 2025 May 9.
5
The conserved noncoding RNA ModT coordinates growth and virulence in Clostridioides difficile.
PLoS Biol. 2024 Dec 13;22(12):e3002948. doi: 10.1371/journal.pbio.3002948. eCollection 2024 Dec.
6
Regulatory networks: Linking toxin production and sporulation in Clostridioides difficile.
Anaerobe. 2025 Feb;91:102920. doi: 10.1016/j.anaerobe.2024.102920. Epub 2024 Nov 7.
7
Adaptation mechanisms of Clostridioides difficile to auranofin and its impact on human gut microbiota.
NPJ Biofilms Microbiomes. 2024 Sep 17;10(1):86. doi: 10.1038/s41522-024-00551-3.
8
Physiological role and complex regulation of O-reducing enzymes in the obligate anaerobe .
mBio. 2024 Oct 16;15(10):e0159124. doi: 10.1128/mbio.01591-24. Epub 2024 Aug 27.
9
Spores of Clostridioides difficile are toxin delivery vehicles.
Commun Biol. 2024 Jul 10;7(1):839. doi: 10.1038/s42003-024-06521-x.
10
Fight or flee, a vital choice for .
mLife. 2024 Feb 9;3(1):14-20. doi: 10.1002/mlf2.12102. eCollection 2024 Mar.

本文引用的文献

1
2
CcpA-mediated repression of Clostridium difficile toxin gene expression.
Mol Microbiol. 2011 Feb;79(4):882-99. doi: 10.1111/j.1365-2958.2010.07495.x. Epub 2010 Dec 28.
3
Antagonistic regulation of motility and transcriptome expression by RpoN and RpoS in Escherichia coli.
Mol Microbiol. 2011 Jan;79(2):375-86. doi: 10.1111/j.1365-2958.2010.07449.x. Epub 2010 Nov 29.
5
Integration of metabolism and virulence by Clostridium difficile CodY.
J Bacteriol. 2010 Oct;192(20):5350-62. doi: 10.1128/JB.00341-10. Epub 2010 Aug 13.
6
Regulation of neurotoxin production and sporulation by a Putative agrBD signaling system in proteolytic Clostridium botulinum.
Appl Environ Microbiol. 2010 Jul;76(13):4448-60. doi: 10.1128/AEM.03038-09. Epub 2010 May 7.
7
Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production.
J Bacteriol. 2009 Dec;191(23):7296-305. doi: 10.1128/JB.00882-09. Epub 2009 Sep 25.
8
Motility and flagellar glycosylation in Clostridium difficile.
J Bacteriol. 2009 Nov;191(22):7050-62. doi: 10.1128/JB.00861-09. Epub 2009 Sep 11.
9
A novel genetic switch controls phase variable expression of CwpV, a Clostridium difficile cell wall protein.
Mol Microbiol. 2009 Nov;74(3):541-56. doi: 10.1111/j.1365-2958.2009.06812.x. Epub 2009 Jul 28.
10
A modular system for Clostridium shuttle plasmids.
J Microbiol Methods. 2009 Jul;78(1):79-85. doi: 10.1016/j.mimet.2009.05.004. Epub 2009 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验