Institut für Lasertechnologien in der Medizin und Meßtechnik, Helmholtzstraße 12, 89081 Ulm, Germany.
Phys Med Biol. 2011 Jun 7;56(11):N139-44. doi: 10.1088/0031-9155/56/11/N02. Epub 2011 May 16.
We investigated the performance of a neural network for derivation of the absorption coefficient of the brain from simulated non-invasive time-resolved reflectance measurements on the head. A five-layered geometry was considered assuming that the optical properties (except the absorption coefficient of the brain) and the thickness of all layers were known with an uncertainty. A solution of the layered diffusion equation was used to train the neural network. We determined the absorption coefficient of the brain with an RMS error of <6% from reflectance data at a single distance calculated by diffusion theory. By applying the neural network to reflectance curves obtained from Monte Carlo simulations, similar errors were found.
我们研究了一种神经网络从模拟的非侵入性时间分辨头部反射测量中推导脑吸收系数的性能。 考虑了一个具有五层结构的几何形状,假设所有层的光学性质(除了脑吸收系数外)和厚度都已知存在不确定性。 我们使用分层扩散方程的解来训练神经网络。 我们通过扩散理论计算的单个距离处的反射率数据,以 RMS 误差<6%确定脑的吸收系数。 通过将神经网络应用于从蒙特卡罗模拟获得的反射率曲线,我们发现了类似的误差。