Suppr超能文献

应用多种人工神经网络确定混浊介质的光学特性。

Application of multiple artificial neural networks for the determination of the optical properties of turbid media.

机构信息

Institut für Lasertechnologien in der Medizin und Meßtechnik an der Universität Ulm, Helmholtzstraße 12, 89081 Ulm, Germany.

出版信息

J Biomed Opt. 2013 May;18(5):57005. doi: 10.1117/1.JBO.18.5.057005.

Abstract

We determined the optical properties of turbid media from simulated spatially resolved reflectance (SRR) curves using an artificial neural network (ANN). In order to improve the performance of our method, multiple ANNs were applied for this problem. First, Monte Carlo (MC) simulations were performed using random optical properties which are relevant for biological tissue. For a better performance of the ANN in respect of SRR measurements, the exact setup geometry was taken into account for the MC simulations. Second, the performed simulations were classified into different categories according to their shape. Third, multiple ANNs which were adjusted to these categories, were used to solve the inverse problem, i.e., the determination of the optical properties from SRR curves. Finally, these ANNs were applied to determine the optical properties of simulated SRR curves out of the range 0.5 mm(-1) < μ(s)(') < 5  mm(-1) and 0.0001 mm(-1) < μ(a)<1 mm(-1). The average relative error was 2.9% and 6.1% for the reduced scattering coefficient μs' and for the absorption coefficient μ(a), respectively.

摘要

我们使用人工神经网络(ANN)从模拟空间分辨反射率(SRR)曲线确定混浊介质的光学性质。为了提高我们方法的性能,针对这个问题应用了多个 ANN。首先,使用与生物组织相关的随机光学性质进行了蒙特卡罗(MC)模拟。为了使 ANN 在 SRR 测量方面具有更好的性能,MC 模拟考虑了准确的设置几何形状。其次,根据形状对进行的模拟进行分类。第三,调整了多个 ANN 以适应这些类别,用于解决反问题,即从 SRR 曲线确定光学性质。最后,将这些 ANN 应用于确定模拟 SRR 曲线的光学性质,范围为 0.5mm^(-1)<μ(s)(')<5mm^(-1)和 0.0001mm^(-1)<μ(a)<1mm^(-1)。对于降低的散射系数μs'和吸收系数μ(a),平均相对误差分别为 2.9%和 6.1%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验