Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
Nat Methods. 2011 May 15;8(7):551-8. doi: 10.1038/nmeth.1607.
Despite the wealth of commercially available antibodies to human proteins, research is often hindered by their inconsistent validation, their poor performance and the inadequate coverage of the proteome. These issues could be addressed by systematic, genome-wide efforts to generate and validate renewable protein binders. We report a multicenter study to assess the potential of hybridoma and phage-display technologies in a coordinated large-scale antibody generation and validation effort. We produced over 1,000 antibodies targeting 20 SH2 domain proteins and evaluated them for potency and specificity by enzyme-linked immunosorbent assay (ELISA), protein microarray and surface plasmon resonance (SPR). We also tested selected antibodies in immunoprecipitation, immunoblotting and immunofluorescence assays. Our results show that high-affinity, high-specificity renewable antibodies generated by different technologies can be produced quickly and efficiently. We believe that this work serves as a foundation and template for future larger-scale studies to create renewable protein binders.
尽管有大量商业化的人源蛋白抗体,但研究往往受到其不一致的验证、性能不佳和蛋白质组覆盖不足的限制。通过系统的、全基因组的努力来生成和验证可再生的蛋白质结合物,可以解决这些问题。我们报告了一项多中心研究,以评估杂交瘤和噬菌体展示技术在协调的大规模抗体生成和验证工作中的潜力。我们生产了 1000 多种针对 20 种 SH2 结构域蛋白的抗体,并通过酶联免疫吸附测定(ELISA)、蛋白质微阵列和表面等离子体共振(SPR)评估了它们的效力和特异性。我们还在免疫沉淀、免疫印迹和免疫荧光检测中测试了选定的抗体。我们的结果表明,通过不同技术生成的高亲和力、高特异性可再生抗体可以快速高效地产生。我们相信这项工作为未来更大规模的研究提供了基础和模板,以创建可再生的蛋白质结合物。