Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
PLoS Biol. 2011 May;9(5):e1000616. doi: 10.1371/journal.pbio.1000616. Epub 2011 May 10.
The bacterial flagellar motor can rotate either clockwise (CW) or counterclockwise (CCW). Three flagellar proteins, FliG, FliM, and FliN, are required for rapid switching between the CW and CCW directions. Switching is achieved by a conformational change in FliG induced by the binding of a chemotaxis signaling protein, phospho-CheY, to FliM and FliN. FliG consists of three domains, FliG(N), FliG(M), and FliG(C), and forms a ring on the cytoplasmic face of the MS ring of the flagellar basal body. Crystal structures have been reported for the FliG(MC) domains of Thermotoga maritima, which consist of the FliG(M) and FliG(C) domains and a helix E that connects these two domains, and full-length FliG of Aquifex aeolicus. However, the basis for the switching mechanism is based only on previously obtained genetic data and is hence rather indirect. We characterized a CW-biased mutant (fliG(ΔPAA)) of Salmonella enterica by direct observation of rotation of a single motor at high temporal and spatial resolution. We also determined the crystal structure of the FliG(MC) domains of an equivalent deletion mutant variant of T. maritima (fliG(ΔPEV)). The FliG(ΔPAA) motor produced torque at wild-type levels under a wide range of external load conditions. The wild-type motors rotated exclusively in the CCW direction under our experimental conditions, whereas the mutant motors rotated only in the CW direction. This result suggests that wild-type FliG is more stable in the CCW state than in the CW state, whereas FliG(ΔPAA) is more stable in the CW state than in the CCW state. The structure of the TM-FliG(MC)(ΔPEV) revealed that extremely CW-biased rotation was caused by a conformational change in helix E. Although the arrangement of FliG(C) relative to FliG(M) in a single molecule was different among the three crystals, a conserved FliG(M)-FliG(C) unit was observed in all three of them. We suggest that the conserved FliG(M)-FliG(C) unit is the basic functional element in the rotor ring and that the PAA deletion induces a conformational change in a hinge-loop between FliG(M) and helix E to achieve the CW state of the FliG ring. We also propose a novel model for the arrangement of FliG subunits within the motor. The model is in agreement with the previous mutational and cross-linking experiments and explains the cooperative switching mechanism of the flagellar motor.
细菌鞭毛马达可以顺时针 (CW) 或逆时针 (CCW) 旋转。三种鞭毛蛋白,FliG、FliM 和 FliN,是快速切换 CW 和 CCW 方向所必需的。通过 FliM 和 FliN 结合化学感应信号蛋白磷酸化-CheY 诱导的 FliG 构象变化来实现切换。FliG 由三个结构域组成,FliG(N)、FliG(M)和 FliG(C),并在鞭毛基体的 MS 环的细胞质面形成一个环。已经报道了 Thermotoga maritima 的 FliG(MC) 结构域的晶体结构,它由 FliG(M)和 FliG(C)结构域以及连接这两个结构域的螺旋 E 组成,以及 Aquifex aeolicus 的全长 FliG。然而,切换机制的基础仅基于先前获得的遗传数据,因此相当间接。我们通过高时间和空间分辨率直接观察单个马达的旋转,对沙门氏菌 enterica 的 CW 偏置突变体 (fliG(ΔPAA)) 进行了表征。我们还确定了 Thermotoga maritima 的等效缺失突变变体 (fliG(ΔPEV)) 的 FliG(MC) 结构域的晶体结构。在广泛的外部负载条件下,FliG(ΔPAA) 马达产生与野生型相同水平的扭矩。在我们的实验条件下,野生型马达仅逆时针 (CCW) 旋转,而突变型马达仅顺时针 (CW) 旋转。这一结果表明,野生型 FliG 在 CCW 状态下比在 CW 状态下更稳定,而 FliG(ΔPAA) 在 CW 状态下比在 CCW 状态下更稳定。TM-FliG(MC)(ΔPEV) 的结构表明,极度 CW 偏置的旋转是由螺旋 E 的构象变化引起的。尽管三个晶体中单个分子中 FliG(C) 相对于 FliG(M) 的排列不同,但在所有三个晶体中都观察到了保守的 FliG(M)-FliG(C) 单元。我们认为,保守的 FliG(M)-FliG(C) 单元是转子环的基本功能元件,而 PAA 缺失诱导 FliG(M)和螺旋 E 之间的铰链环发生构象变化,从而实现 FliG 环的 CW 状态。我们还提出了一个新的马达内 FliG 亚基排列模型。该模型与先前的突变和交联实验一致,并解释了鞭毛马达的协同切换机制。