Suppr超能文献

细菌鞭毛马达旋转开关的结构基础。

Structural basis of the bacterial flagellar motor rotational switching.

机构信息

Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.

The MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.

出版信息

Cell Res. 2024 Nov;34(11):788-801. doi: 10.1038/s41422-024-01017-z. Epub 2024 Aug 23.

Abstract

The bacterial flagellar motor is a huge bidirectional rotary nanomachine that drives rotation of the flagellum for bacterial motility. The cytoplasmic C ring of the flagellar motor functions as the switch complex for the rotational direction switching from counterclockwise to clockwise. However, the structural basis of the rotational switching and how the C ring is assembled have long remained elusive. Here, we present two high-resolution cryo-electron microscopy structures of the C ring-containing flagellar basal body-hook complex from Salmonella Typhimurium, which are in the default counterclockwise state and in a constitutively active CheY mutant-induced clockwise state, respectively. In both complexes, the C ring consists of four subrings, but is in two different conformations. The CheY proteins are bound into an open groove between two adjacent protomers on the surface of the middle subring of the C ring and interact with the FliG and FliM subunits. The binding of the CheY protein induces a significant upward shift of the C ring towards the MS ring and inward movements of its protomers towards the motor center, which eventually remodels the structures of the FliG subunits and reverses the orientations and surface electrostatic potential of the α helices to trigger the counterclockwise-to-clockwise rotational switching. The conformational changes of the FliG subunits reveal that the stator units on the motor require a relocation process in the inner membrane during the rotational switching. This study provides unprecedented molecular insights into the rotational switching mechanism and a detailed overall structural view of the bacterial flagellar motors.

摘要

细菌鞭毛马达是一个巨大的双向旋转纳米机器,它驱动鞭毛旋转,从而使细菌能够运动。鞭毛马达的细胞质 C 环作为旋转方向从逆时针到顺时针切换的开关复合物起作用。然而,旋转切换的结构基础以及 C 环如何组装长期以来一直难以捉摸。在这里,我们展示了来自鼠伤寒沙门氏菌的含有 C 环的鞭毛基体-钩复合体的两个高分辨率冷冻电子显微镜结构,它们分别处于默认的逆时针状态和组成型激活的 CheY 突变体诱导的顺时针状态。在这两个复合物中,C 环由四个亚环组成,但处于两种不同的构象。CheY 蛋白结合在 C 环中间亚环表面两个相邻原体之间的开放凹槽中,并与 FliG 和 FliM 亚基相互作用。CheY 蛋白的结合导致 C 环向上显著移位,朝向 MS 环,并向马达中心向内移动,这最终重塑了 FliG 亚基的结构,并反转了 α 螺旋的方向和表面静电势,从而触发逆时针到顺时针的旋转切换。FliG 亚基的构象变化表明,在旋转切换过程中,定子单元在内膜中需要重新定位。这项研究为旋转切换机制提供了前所未有的分子见解,并提供了细菌鞭毛马达的详细整体结构视图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fdd/11528121/5e9657676ebb/41422_2024_1017_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验