Suppr超能文献

细菌菌毛尖端充当机械力传感器。

The bacterial fimbrial tip acts as a mechanical force sensor.

机构信息

Department of Microbiology, University of Washington, Seattle, Washington, United States of America.

出版信息

PLoS Biol. 2011 May;9(5):e1000617. doi: 10.1371/journal.pbio.1000617. Epub 2011 May 10.

Abstract

There is increasing evidence that the catch bond mechanism, where binding becomes stronger under tensile force, is a common property among non-covalent interactions between biological molecules that are exposed to mechanical force in vivo. Here, by using the multi-protein tip complex of the mannose-binding type 1 fimbriae of Escherichia coli, we show how the entire quaternary structure of the adhesive organella is adapted to facilitate binding under mechanically dynamic conditions induced by flow. The fimbrial tip mediates shear-dependent adhesion of bacteria to uroepithelial cells and demonstrates force-enhanced interaction with mannose in single molecule force spectroscopy experiments. The mannose-binding, lectin domain of the apex-positioned adhesive protein FimH is docked to the anchoring pilin domain in a distinct hooked manner. The hooked conformation is highly stable in molecular dynamics simulations under no force conditions but permits an easy separation of the domains upon application of an external tensile force, allowing the lectin domain to switch from a low- to a high-affinity state. The conformation between the FimH pilin domain and the following FimG subunit of the tip is open and stable even when tensile force is applied, providing an extended lever arm for the hook unhinging under shear. Finally, the conformation between FimG and FimF subunits is highly flexible even in the absence of tensile force, conferring to the FimH adhesin an exploratory function and high binding rates. The fimbrial tip of type 1 Escherichia coli is optimized to have a dual functionality: flexible exploration and force sensing. Comparison to other structures suggests that this property is common in unrelated bacterial and eukaryotic adhesive complexes that must function in dynamic conditions.

摘要

越来越多的证据表明,捕获键机制(即在张力下结合变得更强的机制)是生物分子中非共价相互作用的共同特性,这些相互作用在体内会受到机械力的影响。在这里,我们使用大肠杆菌甘露糖结合型 1 菌毛的多蛋白尖端复合物,展示了整个四级结构的适应性,以促进在流动引起的机械动态条件下的结合。菌毛尖端介导细菌与尿路上皮细胞的剪切依赖性粘附,并在单分子力谱实验中证明了与甘露糖的力增强相互作用。位于尖端位置的粘附蛋白 FimH 的甘露糖结合凝集素结构域以独特的钩状方式与锚定菌毛结构域对接。在无外力条件下,钩状构象在分子动力学模拟中非常稳定,但在外力作用下允许域容易分离,从而使凝集素结构域从低亲和力状态切换到高亲和力状态。即使施加拉伸力,FimH 菌毛结构域和尖端的后续 FimG 亚基之间的构象仍然是开放和稳定的,为钩状解锁提供了一个扩展的杠杆臂,以在剪切下进行。最后,即使没有拉伸力,FimG 和 FimF 亚基之间的构象也非常灵活,这使 FimH 粘附素具有探索功能和高结合率。1 型大肠杆菌菌毛的尖端被优化为具有双重功能:灵活的探索和力感应。与其他结构的比较表明,这种特性在动态条件下必须发挥作用的无关细菌和真核粘附复合物中很常见。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bac/3091844/3ac7451ce800/pbio.1000617.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验