Department of Biological Structure, Box 357420, University of Washington, Seattle, WA 98195, USA.
Cell. 2010 May 14;141(4):645-55. doi: 10.1016/j.cell.2010.03.038.
The Escherichia coli fimbrial adhesive protein, FimH, mediates shear-dependent binding to mannosylated surfaces via force-enhanced allosteric catch bonds, but the underlying structural mechanism was previously unknown. Here we present the crystal structure of FimH incorporated into the multiprotein fimbrial tip, where the anchoring (pilin) domain of FimH interacts with the mannose-binding (lectin) domain and causes a twist in the beta sandwich fold of the latter. This loosens the mannose-binding pocket on the opposite end of the lectin domain, resulting in an inactive low-affinity state of the adhesin. The autoinhibition effect of the pilin domain is removed by application of tensile force across the bond, which separates the domains and causes the lectin domain to untwist and clamp tightly around the ligand like a finger-trap toy. Thus, beta sandwich domains, which are common in multidomain proteins exposed to tensile force in vivo, can undergo drastic allosteric changes and be subjected to mechanical regulation.
大肠杆菌菌毛黏附蛋白 FimH 通过力增强变构结合键介导对甘露糖化表面的剪切依赖性结合,但以前未知其潜在的结构机制。在这里,我们展示了整合到多蛋白菌毛尖端的 FimH 的晶体结构,其中 FimH 的锚定(菌毛)结构域与甘露糖结合(凝集素)结构域相互作用,并导致后者的β三明治折叠发生扭曲。这会使凝集素结构域另一端的甘露糖结合口袋变松,导致黏附素处于非活性的低亲和力状态。通过在键上施加张力,可以消除菌毛结构域的自动抑制作用,从而使结构域分离,并使凝集素结构域像手指陷阱玩具一样解开并紧紧地夹住配体。因此,暴露于体内张力的多结构域蛋白中常见的β三明治结构域可以发生剧烈的变构变化,并受到机械调节。