Suppr超能文献

硫酸乙酰肝素的结构不同于肝素,这对其功能有影响。

The solution structure of heparan sulfate differs from that of heparin: implications for function.

机构信息

Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom.

出版信息

J Biol Chem. 2011 Jul 15;286(28):24842-54. doi: 10.1074/jbc.M111.226027. Epub 2011 May 16.

Abstract

The highly sulfated polysaccharides heparin and heparan sulfate (HS) play key roles in the regulation of physiological and pathophysiological processes. Despite its importance, no molecular structures of free HS have been reported up to now. By combining analytical ultracentrifugation, small angle x-ray scattering, and constrained scattering modeling recently used for heparin, we have analyzed the solution structures for eight purified HS fragments degree of polymerization 6-18 (dp6-dp18) and dp24, corresponding to the predominantly unsulfated GlcA-GlcNAc domains of heparan sulfate. Unlike heparin, the sedimentation coefficient s(20,)(w) of HS dp6-dp24 showed a small rotor speed dependence, where similar s(20,)(w) values of 0.82-1.26 S (absorbance optics) and 1.05-1.34 S (interference optics) were determined. The corresponding x-ray scattering measurements of HS dp6-dp24 gave radius of gyration (R(G)) values from 1.03 to 2.82 nm, cross-sectional radius of gyration (R(XS)) values from 0.31 to 0.65 nm, and maximum lengths (L) from 3.0 to 10.0 nm. These data showed that HS has a longer and more bent structure than heparin. Constrained scattering modeling starting from 5000-8000 conformationally randomized HS structures gave best fit dp6-dp16 molecular structures that were longer and more bent than their equivalents in heparin. No fits were obtained for HS dp18 or dp24, indicating their higher flexibility. We conclude that HS displays an extended bent conformation that is significantly distinct from that for heparin. The difference is attributed to the different predominant monosaccharide sequence and reduced sulfation of HS, indicating that HS may interact differently with proteins compared with heparin.

摘要

高度硫酸化的多糖肝素和硫酸乙酰肝素 (HS) 在调节生理和病理生理过程中发挥着关键作用。尽管其重要性不言而喻,但迄今为止尚未报道过游离 HS 的分子结构。通过结合最近用于肝素的分析超速离心、小角 X 射线散射和约束散射建模,我们分析了 8 个纯化的 HS 片段(聚合度为 6-18[dp6-dp18]和 dp24)的溶液结构,这些片段对应于硫酸乙酰肝素中主要未硫酸化的 GlcA-GlcNAc 结构域。与肝素不同,HS dp6-dp24 的沉降系数 s(20,)(w) 对转子转速的依赖性较小,通过吸收光学法和干涉光学法确定了相似的 s(20,)(w) 值 0.82-1.26 S 和 1.05-1.34 S。HS dp6-dp24 的相应 X 射线散射测量给出了回转半径 (R(G)) 值从 1.03 到 2.82 nm,截面回转半径 (R(XS)) 值从 0.31 到 0.65 nm,最大长度 (L) 从 3.0 到 10.0 nm。这些数据表明 HS 具有比肝素更长且更弯曲的结构。从 5000-8000 个构象随机化的 HS 结构开始的约束散射建模给出了最佳拟合的 dp6-dp16 分子结构,其长度和弯曲度均大于肝素中的相应结构。未获得 HS dp18 或 dp24 的拟合结果,表明其具有更高的灵活性。我们得出结论,HS 表现出伸展的弯曲构象,与肝素的构象明显不同。这种差异归因于 HS 中不同的主要单糖序列和较低的硫酸化程度,表明 HS 与蛋白质的相互作用可能与肝素不同。

相似文献

1
The solution structure of heparan sulfate differs from that of heparin: implications for function.
J Biol Chem. 2011 Jul 15;286(28):24842-54. doi: 10.1074/jbc.M111.226027. Epub 2011 May 16.
2
The solution structure of heparan sulfate differs from that of heparin: implications for function.
J Biol Chem. 2013 Sep 27;288(39):27737-51. doi: 10.1074/jbc.M113.492223. Epub 2013 Aug 6.
3
Semi-rigid solution structures of heparin by constrained X-ray scattering modelling: new insight into heparin-protein complexes.
J Mol Biol. 2010 Jan 22;395(3):504-21. doi: 10.1016/j.jmb.2009.10.064. Epub 2009 Nov 3.
4
Bivalent and co-operative binding of complement factor H to heparan sulfate and heparin.
Biochem J. 2012 Jun 15;444(3):417-28. doi: 10.1042/BJ20120183.
5
Preparation and characterization of partial de-O-sulfation of heparin oligosaccharide library.
Carbohydr Res. 2021 Jan;499:108226. doi: 10.1016/j.carres.2020.108226. Epub 2021 Jan 2.
7
Heparin-derived heparan sulfate mimics to modulate heparan sulfate-protein interaction in inflammation and cancer.
Matrix Biol. 2010 Jul;29(6):442-52. doi: 10.1016/j.matbio.2010.04.003. Epub 2010 Apr 21.
8
An approach for separation and complete structural sequencing of heparin/heparan sulfate-like oligosaccharides.
Anal Chem. 2013 Jun 18;85(12):5787-95. doi: 10.1021/ac400439a. Epub 2013 May 28.
9
Heparan sulfate and heparin interactions with proteins.
J R Soc Interface. 2015 Sep 6;12(110):0589. doi: 10.1098/rsif.2015.0589.
10
Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library.
J Biol Chem. 2004 Mar 26;279(13):12346-54. doi: 10.1074/jbc.M313523200. Epub 2004 Jan 5.

引用本文的文献

1
An integrated approach using orthogonal analytical techniques to characterize heparan sulfate structure.
Glycoconj J. 2017 Feb;34(1):107-117. doi: 10.1007/s10719-016-9734-7. Epub 2016 Oct 22.
2
: a suite of programs for comparing atomistic models with small-angle scattering data.
J Appl Crystallogr. 2015 May 9;48(Pt 3):953-961. doi: 10.1107/S1600576715007062. eCollection 2015 Jun 1.
3
Molecular Interactions between Complement Factor H and Its Heparin and Heparan Sulfate Ligands.
Front Immunol. 2014 Mar 31;5:126. doi: 10.3389/fimmu.2014.00126. eCollection 2014.
5
The solution structure of heparan sulfate differs from that of heparin: implications for function.
J Biol Chem. 2013 Sep 27;288(39):27737-51. doi: 10.1074/jbc.M113.492223. Epub 2013 Aug 6.
7
Perlecan domain 1 recombinant proteoglycan augments BMP-2 activity and osteogenesis.
BMC Biotechnol. 2012 Sep 11;12:60. doi: 10.1186/1472-6750-12-60.

本文引用的文献

1
Catalytic mechanism of heparinase II investigated by site-directed mutagenesis and the crystal structure with its substrate.
J Biol Chem. 2010 Jun 25;285(26):20051-61. doi: 10.1074/jbc.M110.101071. Epub 2010 Apr 19.
2
Generating heparan sulfate saccharide libraries for glycomics applications.
Nat Protoc. 2010 May;5(5):821-33. doi: 10.1038/nprot.2010.17. Epub 2010 Apr 8.
3
Semi-rigid solution structures of heparin by constrained X-ray scattering modelling: new insight into heparin-protein complexes.
J Mol Biol. 2010 Jan 22;395(3):504-21. doi: 10.1016/j.jmb.2009.10.064. Epub 2009 Nov 3.
4
Constrained solution scattering modelling of human antibodies and complement proteins reveals novel biological insights.
J R Soc Interface. 2009 Oct 6;6 Suppl 5(Suppl 5):S679-96. doi: 10.1098/rsif.2009.0164.focus. Epub 2009 Jul 15.
5
Electrostatic interactions contribute to the folded-back conformation of wild type human factor H.
J Mol Biol. 2009 Aug 7;391(1):98-118. doi: 10.1016/j.jmb.2009.06.010. Epub 2009 Jun 6.
6
Heparan sulfate proteoglycans are receptors for the cell-surface trafficking and biological activity of transglutaminase-2.
J Biol Chem. 2009 Jul 3;284(27):18411-23. doi: 10.1074/jbc.M109.012948. Epub 2009 Apr 27.
10
X-ray and neutron scattering data and their constrained molecular modeling.
Methods Cell Biol. 2008;84:375-423. doi: 10.1016/S0091-679X(07)84013-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验