Suppr超能文献

多指静态抓握过程中接触力的协调

Coordination of contact forces during multifinger static prehension.

作者信息

Martin Joel R, Latash Mark L, Zatsiorsky Vladimir M

机构信息

Department of Kinesiology, Pennsylvania State University, University Park, PA, USA.

出版信息

J Appl Biomech. 2011 May;27(2):87-98. doi: 10.1123/jab.27.2.87.

Abstract

This study investigated the effects of modifying contact finger forces in one direction-normal or tangential-on the entire set of the contact forces, while statically holding an object. Subjects grasped a handle instrumented with finger force-moment sensors, maintained it at rest in the air, and then slowly: (1) increased the grasping force, (2) tried to spread fingers apart, and (3) tried to squeeze fingers together. Analysis was mostly performed at the virtual finger (VF) level (the VF is an imaginable finger that generates the same force and moment as the four fingers combined). For all three tasks there were statistically significant changes in the VF normal and tangential forces. For finger spreading/squeezing the tangential force neutral point was located between the index and middle fingers. We conclude that the internal forces are regulated as a whole, including adjustments in both normal and tangential force, instead of only a subset of forces (normal or tangential). The effects of such factors as EFFORT and TORQUE were additive; their interaction was not statistically significant, thus supporting the principle of superposition in human prehension.

摘要

本研究调查了在静态握持物体时,沿一个方向(法线方向或切线方向)改变接触手指力对整个接触力集合的影响。受试者握住一个装有手指力 - 力矩传感器的手柄,将其在空中保持静止,然后缓慢地:(1) 增加握力,(2) 尝试分开手指,以及 (3) 尝试挤压手指。分析主要在虚拟手指(VF)水平进行(虚拟手指是一个可想象的手指,其产生的力和力矩与四根手指组合产生的相同)。对于所有三项任务,虚拟手指的法线和切线力都有统计学上的显著变化。对于手指分开/挤压,切线力中性点位于食指和中指之间。我们得出结论,内力作为一个整体进行调节,包括法线力和切线力的调整,而不是仅调整一部分力(法线力或切线力)。诸如力和扭矩等因素的影响是相加的;它们的相互作用在统计学上不显著,从而支持了人类抓握中的叠加原理。

相似文献

1
Coordination of contact forces during multifinger static prehension.
J Appl Biomech. 2011 May;27(2):87-98. doi: 10.1123/jab.27.2.87.
2
Prehension synergies during smooth changes of the external torque.
Exp Brain Res. 2011 Sep;213(4):493-506. doi: 10.1007/s00221-011-2799-4. Epub 2011 Jul 28.
3
Effects of grasping force magnitude on the coordination of digit forces in multi-finger prehension.
Exp Brain Res. 2009 Mar;194(1):115-29. doi: 10.1007/s00221-008-1675-3. Epub 2009 Jan 13.
4
Digit force adjustments during finger addition/removal in multi-digit prehension.
Exp Brain Res. 2008 Aug;189(3):345-59. doi: 10.1007/s00221-008-1430-9. Epub 2008 Jun 14.
5
Prehension stability: experiments with expanding and contracting handle.
J Neurophysiol. 2006 Apr;95(4):2513-29. doi: 10.1152/jn.00839.2005. Epub 2005 Nov 30.
6
Prehension synergies: principle of superposition and hierarchical organization in circular object prehension.
Exp Brain Res. 2007 Jul;180(3):541-56. doi: 10.1007/s00221-007-0872-9. Epub 2007 Feb 6.
7
Tangential finger forces use mechanical advantage during static grasping.
J Appl Biomech. 2012 Feb;28(1):78-84. doi: 10.1123/jab.28.1.78.
8
Static prehension of a horizontally oriented object in three dimensions.
Exp Brain Res. 2012 Jan;216(2):249-61. doi: 10.1007/s00221-011-2923-5. Epub 2011 Nov 10.
9
Prehension synergies: trial-to-trial variability and principle of superposition during static prehension in three dimensions.
J Neurophysiol. 2005 Jun;93(6):3649-58. doi: 10.1152/jn.01262.2004. Epub 2005 Feb 23.
10
Prehension synergies: effects of object geometry and prescribed torques.
Exp Brain Res. 2003 Jan;148(1):77-87. doi: 10.1007/s00221-002-1278-3. Epub 2002 Nov 12.

引用本文的文献

本文引用的文献

1
The principle of superposition in human prehension.
Robotica. 2004 Mar 1;22(2):231-234. doi: 10.1017/S0263574703005344.
2
Manipulation of a fragile object.
Exp Brain Res. 2010 Apr;202(2):413-30. doi: 10.1007/s00221-009-2148-z. Epub 2009 Dec 31.
3
Effects of grasping force magnitude on the coordination of digit forces in multi-finger prehension.
Exp Brain Res. 2009 Mar;194(1):115-29. doi: 10.1007/s00221-008-1675-3. Epub 2009 Jan 13.
4
Multifinger ab- and adduction strength and coordination.
J Hand Ther. 2008 Oct-Dec;21(4):377-85. doi: 10.1197/j.jht.2008.02.002.
5
Endpoint force fluctuations reveal flexible rather than synergistic patterns of muscle cooperation.
J Neurophysiol. 2008 Nov;100(5):2455-71. doi: 10.1152/jn.90274.2008. Epub 2008 Sep 17.
6
Multifinger prehension: an overview.
J Mot Behav. 2008 Sep;40(5):446-76. doi: 10.3200/JMBR.40.5.446-476.
7
Stability of the multi-finger prehension synergy studied with transcranial magnetic stimulation.
Exp Brain Res. 2008 Sep;190(2):225-38. doi: 10.1007/s00221-008-1466-x. Epub 2008 Jul 1.
8
Digit force adjustments during finger addition/removal in multi-digit prehension.
Exp Brain Res. 2008 Aug;189(3):345-59. doi: 10.1007/s00221-008-1430-9. Epub 2008 Jun 14.
9
Is the principle of minimization of secondary moments validated during various fingertip force production conditions?
Hum Mov Sci. 2008 Jun;27(3):396-407. doi: 10.1016/j.humov.2008.02.019. Epub 2008 Apr 8.
10
A technique to determine friction at the fingertips.
J Appl Biomech. 2008 Feb;24(1):43-50. doi: 10.1123/jab.24.1.43.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验