IEEE Trans Pattern Anal Mach Intell. 2011 Aug;33(8):1646-58. doi: 10.1109/TPAMI.2011.95. Epub 2011 May 12.
We present an algorithm for determining the Morse complex of a two or three-dimensional grayscale digital image. Each cell in the Morse complex corresponds to a topological change in the level sets (i.e., a critical point) of the grayscale image. Since more than one critical point may be associated with a single image voxel, we model digital images by cubical complexes. A new homotopic algorithm is used to construct a discrete Morse function on the cubical complex that agrees with the digital image and has exactly the number and type of critical cells necessary to characterize the topological changes in the level sets. We make use of discrete Morse theory and simple homotopy theory to prove correctness of this algorithm. The resulting Morse complex is considerably simpler than the cubical complex originally used to represent the image and may be used to compute persistent homology.
我们提出了一种用于确定二维或三维灰度数字图像 Morse 复形的算法。Morse 复形中的每个单元对应于灰度图像的水平集(即临界点)的拓扑变化。由于单个图像体素可能与多个临界点相关联,因此我们通过立方体复形来对数字图像进行建模。使用新的同伦算法在立方体复形上构建离散 Morse 函数,该函数与数字图像一致,并且具有精确的数量和类型的临界单元,这些单元是对水平集的拓扑变化进行特征描述所必需的。我们利用离散 Morse 理论和简单的同伦理论来证明该算法的正确性。所得的 Morse 复形比最初用于表示图像的立方体复形要简单得多,并且可以用于计算持久同调。