Suppr超能文献

用于图像分割的拓扑感知不确定性

Topology-Aware Uncertainty for Image Segmentation.

作者信息

Gupta Saumya, Zhang Yikai, Hu Xiaoling, Prasanna Prateek, Chen Chao

机构信息

Stony Brook University, NY, USA.

Morgan Stanley, NY, USA.

出版信息

Adv Neural Inf Process Syst. 2024;36:8186-8207. Epub 2024 May 30.

Abstract

Segmentation of curvilinear structures such as vasculature and road networks is challenging due to relatively weak signals and complex geometry/topology. To facilitate and accelerate large scale annotation, one has to adopt semi-automatic approaches such as proofreading by experts. In this work, we focus on uncertainty estimation for such tasks, so that highly uncertain, and thus error-prone structures can be identified for human annotators to verify. Unlike most existing works, which provide pixel-wise uncertainty maps, we stipulate it is crucial to estimate uncertainty in the units of topological structures, e.g., small pieces of connections and branches. To achieve this, we leverage tools from topological data analysis, specifically discrete Morse theory (DMT), to first capture the structures, and then reason about their uncertainties. To model the uncertainty, we (1) propose a joint prediction model that estimates the uncertainty of a structure while taking the neighboring structures into consideration (inter-structural uncertainty); (2) propose a novel Probabilistic DMT to model the inherent uncertainty within each structure (intra-structural uncertainty) by sampling its representations via a perturb- and-walk scheme. On various 2D and 3D datasets, our method produces better structure-wise uncertainty maps compared to existing works. Code available at https://github.com/Saumya-Gupta-26/struct-uncertainty.

摘要

诸如血管系统和道路网络等曲线结构的分割具有挑战性,因为其信号相对较弱且几何形状/拓扑结构复杂。为了便于并加速大规模标注,人们不得不采用半自动方法,例如由专家进行校对。在这项工作中,我们专注于此类任务的不确定性估计,以便能够识别出高度不确定从而容易出错的结构,供人工标注员进行验证。与大多数现有工作不同,它们提供的是逐像素的不确定性图,我们规定以拓扑结构单元(例如小段连接和分支)来估计不确定性至关重要。为实现这一点,我们利用拓扑数据分析工具,特别是离散莫尔斯理论(DMT),首先捕捉结构,然后推断其不确定性。为了对不确定性进行建模,我们(1)提出了一种联合预测模型,该模型在考虑相邻结构的同时估计结构的不确定性(结构间不确定性);(2)提出了一种新颖的概率离散莫尔斯理论,通过一种扰动并游走方案对其表示进行采样,以对每个结构内的固有不确定性(结构内不确定性)进行建模。在各种2D和3D数据集上,与现有工作相比,我们的方法生成了更好的基于结构的不确定性图。代码可在https://github.com/Saumya-Gupta-26/struct-uncertainty获取。

相似文献

1
Topology-Aware Uncertainty for Image Segmentation.用于图像分割的拓扑感知不确定性
Adv Neural Inf Process Syst. 2024;36:8186-8207. Epub 2024 May 30.
6
Anatomically-aware uncertainty for semi-supervised image segmentation.用于半监督图像分割的解剖学感知不确定性
Med Image Anal. 2024 Jan;91:103011. doi: 10.1016/j.media.2023.103011. Epub 2023 Oct 30.
10
Dynamic Linear Transformer for 3D Biomedical Image Segmentation.用于3D生物医学图像分割的动态线性变压器
Mach Learn Med Imaging. 2022 Sep;13583:171-180. doi: 10.1007/978-3-031-21014-3_18. Epub 2022 Dec 16.

引用本文的文献

1
: Generating Histopathology Cell Topology with a Diffusion Model.利用扩散模型生成组织病理学细胞拓扑结构
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2025 Jun;2025:20979-20989. doi: 10.1109/cvpr52734.2025.01954. Epub 2025 Aug 13.
8
Topology aware multitask cascaded U-Net for cerebrovascular segmentation.用于脑血管分割的拓扑感知多任务级联U型网络
PLoS One. 2024 Dec 5;19(12):e0311439. doi: 10.1371/journal.pone.0311439. eCollection 2024.
10
The Future of Material Scientists in an Age of Artificial Intelligence.人工智能时代材料科学家的未来。
Adv Sci (Weinh). 2024 May;11(19):e2401401. doi: 10.1002/advs.202401401. Epub 2024 Mar 13.

本文引用的文献

4
ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New Model.ROSE:一个视网膜 OCT-A 血管分割数据集和新模型。
IEEE Trans Med Imaging. 2021 Mar;40(3):928-939. doi: 10.1109/TMI.2020.3042802. Epub 2021 Mar 2.
6
A Topological Loss Function for Deep-Learning Based Image Segmentation Using Persistent Homology.基于持久同调的深度学习图像分割的拓扑损失函数。
IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):8766-8778. doi: 10.1109/TPAMI.2020.3013679. Epub 2022 Nov 7.
9
Dense Dilated Network With Probability Regularized Walk for Vessel Detection.基于概率正则化游走的密集扩张网络的血管检测。
IEEE Trans Med Imaging. 2020 May;39(5):1392-1403. doi: 10.1109/TMI.2019.2950051. Epub 2019 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验