Gupta Saumya, Zhang Yikai, Hu Xiaoling, Prasanna Prateek, Chen Chao
Stony Brook University, NY, USA.
Morgan Stanley, NY, USA.
Adv Neural Inf Process Syst. 2024;36:8186-8207. Epub 2024 May 30.
Segmentation of curvilinear structures such as vasculature and road networks is challenging due to relatively weak signals and complex geometry/topology. To facilitate and accelerate large scale annotation, one has to adopt semi-automatic approaches such as proofreading by experts. In this work, we focus on uncertainty estimation for such tasks, so that highly uncertain, and thus error-prone structures can be identified for human annotators to verify. Unlike most existing works, which provide pixel-wise uncertainty maps, we stipulate it is crucial to estimate uncertainty in the units of topological structures, e.g., small pieces of connections and branches. To achieve this, we leverage tools from topological data analysis, specifically discrete Morse theory (DMT), to first capture the structures, and then reason about their uncertainties. To model the uncertainty, we (1) propose a joint prediction model that estimates the uncertainty of a structure while taking the neighboring structures into consideration (inter-structural uncertainty); (2) propose a novel Probabilistic DMT to model the inherent uncertainty within each structure (intra-structural uncertainty) by sampling its representations via a perturb- and-walk scheme. On various 2D and 3D datasets, our method produces better structure-wise uncertainty maps compared to existing works. Code available at https://github.com/Saumya-Gupta-26/struct-uncertainty.
诸如血管系统和道路网络等曲线结构的分割具有挑战性,因为其信号相对较弱且几何形状/拓扑结构复杂。为了便于并加速大规模标注,人们不得不采用半自动方法,例如由专家进行校对。在这项工作中,我们专注于此类任务的不确定性估计,以便能够识别出高度不确定从而容易出错的结构,供人工标注员进行验证。与大多数现有工作不同,它们提供的是逐像素的不确定性图,我们规定以拓扑结构单元(例如小段连接和分支)来估计不确定性至关重要。为实现这一点,我们利用拓扑数据分析工具,特别是离散莫尔斯理论(DMT),首先捕捉结构,然后推断其不确定性。为了对不确定性进行建模,我们(1)提出了一种联合预测模型,该模型在考虑相邻结构的同时估计结构的不确定性(结构间不确定性);(2)提出了一种新颖的概率离散莫尔斯理论,通过一种扰动并游走方案对其表示进行采样,以对每个结构内的固有不确定性(结构内不确定性)进行建模。在各种2D和3D数据集上,与现有工作相比,我们的方法生成了更好的基于结构的不确定性图。代码可在https://github.com/Saumya-Gupta-26/struct-uncertainty获取。