Suppr超能文献

ASIC3 通道中非质子配体感应结构域的原子水平表征。

Atomic level characterization of the nonproton ligand-sensing domain of ASIC3 channels.

机构信息

Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.

出版信息

J Biol Chem. 2011 Jul 15;286(28):24996-5006. doi: 10.1074/jbc.M111.239558. Epub 2011 May 17.

Abstract

Acid-sensing ion channels (ASICs) are known to be primarily activated by extracellular protons. Recently, we characterized a novel nonproton ligand (2-guanidine-4-methylquinazoline, GMQ), which activates the ASIC3 channel subtype at neutral pH. Using an interactive computational-experimental approach, here we extend our investigation to delineate the architecture of the GMQ-sensing domain in the ASIC3 channels. We first established a GMQ binding mode and revealed that residues Glu-423, Glu-79, Leu-77, Arg-376, Gln-271, and Gln-269 play key roles in forming the GMQ-sensing domain. We then verified the GMQ binding mode using ab initio calculation and mutagenesis and demonstrated the critical role of the above GMQ-binding residues in the interplay among GMQ, proton, and Ca(2+) in regulating the function of ASIC3. Additionally, we showed that the same residues involved in coordinating GMQ responses are also critical for activation of the ASIC3(E79C) mutant by thiol-reactive compound DTNB. Thus, a range of complementary techniques provide independent evidence for the structural details of the GMQ-sensing domain at atomic level, laying the foundation for further investigations of endogenous nonproton ligands and gating mechanisms of the ASIC3 channels.

摘要

酸敏离子通道(ASICs)已知主要被细胞外质子激活。最近,我们鉴定了一种新型非质子配体(2-胍基-4-甲基喹唑啉,GMQ),其在中性 pH 下激活 ASIC3 通道亚型。在这里,我们采用交互式计算实验方法,将研究扩展到描绘 ASIC3 通道中 GMQ 感应结构域的结构。我们首先建立了 GMQ 结合模式,并揭示了残基Glu-423、Glu-79、Leu-77、Arg-376、Gln-271 和 Gln-269 在形成 GMQ 感应结构域中起关键作用。然后,我们使用从头计算和突变验证了 GMQ 结合模式,并证明了上述 GMQ 结合残基在 GMQ、质子和 Ca(2+) 调节 ASIC3 功能相互作用中的关键作用。此外,我们还表明,参与协调 GMQ 反应的相同残基对于由硫醇反应性化合物 DTNB 激活 ASIC3(E79C)突变体也至关重要。因此,一系列互补技术为 GMQ 感应结构域在原子水平上的结构细节提供了独立的证据,为进一步研究内源性非质子配体和 ASIC3 通道的门控机制奠定了基础。

相似文献

5
Heteroarylguanidines as Allosteric Modulators of ASIC1a and ASIC3 Channels.杂芳基胍类作为 ASIC1a 和 ASIC3 通道的别构调节剂。
ACS Chem Neurosci. 2018 Jun 20;9(6):1357-1365. doi: 10.1021/acschemneuro.7b00529. Epub 2018 Mar 30.

引用本文的文献

6
Potentiation and Block of ASIC1a by Memantine.美金刚增强和阻断 ASIC1a。
Cell Mol Neurobiol. 2018 May;38(4):869-881. doi: 10.1007/s10571-017-0561-6. Epub 2017 Oct 20.
10
Regulating Factors in Acid-Sensing Ion Channel 1a Function.酸敏感离子通道1a功能的调节因子
Neurochem Res. 2016 Apr;41(4):631-45. doi: 10.1007/s11064-015-1768-x. Epub 2015 Nov 18.

本文引用的文献

1
ASIC3 channels in multimodal sensory perception.ASIC3 通道在多模态感觉感知中的作用。
ACS Chem Neurosci. 2011 Jan 19;2(1):26-37. doi: 10.1021/cn100094b. Epub 2010 Nov 12.
10
Molecular dynamics simulations of membrane channels and transporters.膜通道和转运体的分子动力学模拟
Curr Opin Struct Biol. 2009 Apr;19(2):128-37. doi: 10.1016/j.sbi.2009.02.011. Epub 2009 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验