Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031; Departments of Biochemistry and Molecular Cell Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031; Department of Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
J Biol Chem. 2011 Dec 9;286(49):42635-42646. doi: 10.1074/jbc.M111.289058. Epub 2011 Oct 13.
Acid-sensing ion channels (ASICs), which belong to the epithelial sodium channel/degenerin family, are activated by extracellular protons and are inhibited by amiloride (AMI), an important pharmacological tool for studying all known members of epithelial sodium channel/degenerin. In this study, we reported that AMI paradoxically opened homomeric ASIC3 and heteromeric ASIC3 plus ASIC1b channels at neutral pH and synergistically enhanced channel activation induced by mild acidosis (pH 7.2 to 6.8). The characteristic profile of AMI stimulation of ASIC3 channels was reminiscent of the channel activation by the newly identified nonproton ligand, 2-guanidine-4-methylquinazoline. Using site-directed mutagenesis, we showed that ASIC3 activation by AMI, but not its inhibitory effect, was dependent on the integrity of the nonproton ligand sensing domain in ASIC3 channels. Moreover, the structure-activity relationship study demonstrated the differential requirement of the 5-amino group in AMI for the stimulation or inhibition effect, strengthening the different interactions within ASIC3 channels that confer the paradoxical actions of AMI. Furthermore, using covalent modification analyses, we provided strong evidence supporting the nonproton ligand sensing domain is required for the stimulation of ASIC3 channels by AMI. Finally, we showed that AMI causes pain-related behaviors in an ASIC3-dependent manner. These data reinforce the idea that ASICs can sense nonproton ligands in addition to protons. The results also indicate caution in the use of AMI for studying ASIC physiology and in the development of AMI-derived ASIC inhibitors for treating pain syndromes.
酸敏离子通道(ASICs)属于上皮钠通道/退行离子通道家族,被细胞外质子激活,并被阿米洛利(AMI)抑制,AMI 是研究所有已知上皮钠通道/退行离子通道成员的重要药理学工具。在这项研究中,我们报告 AMI 在中性 pH 值下反常地打开同源 ASIC3 和异源 ASIC3 加 ASIC1b 通道,并协同增强由轻度酸中毒(pH7.2 至 6.8)引起的通道激活。AMI 刺激 ASIC3 通道的特征性特征使人联想到新发现的非质子配体 2-胍基-4-甲基喹唑啉对通道的激活作用。通过定点突变,我们表明 AMI 对 ASIC3 通道的激活作用(而非其抑制作用)依赖于 ASIC3 通道中非质子配体感应域的完整性。此外,构效关系研究表明 AMI 中 5-氨基对刺激或抑制作用的要求不同,这增强了在 ASIC3 通道内赋予 AMI 反常作用的不同相互作用。此外,通过共价修饰分析,我们提供了强有力的证据支持 AMI 刺激 ASIC3 通道需要非质子配体感应域。最后,我们表明 AMI 以 ASIC3 依赖性方式引起与疼痛相关的行为。这些数据强化了 ASIC 除了质子之外还可以感知非质子配体的观点。研究结果还表明,在研究 ASIC 生理学和开发用于治疗疼痛综合征的 AMI 衍生 ASIC 抑制剂时,应谨慎使用 AMI。