Suppr超能文献

Herpes simplex virus type 1 DNA polymerase. Mechanism-based affinity chromatography.

作者信息

Reardon J E

机构信息

Experimental Therapy Division, Wellcome Research Laboratories, Research Triangle Park, North Carolina 27709.

出版信息

J Biol Chem. 1990 May 5;265(13):7112-5.

PMID:2158986
Abstract

The potent inhibition of herpes simplex type 1 (HSV-1) DNA polymerase by acyclovir triphosphate has previously been shown to be due to the formation of a dead-end complex upon binding of the next 2'-deoxynucleoside 5'-triphosphate encoded by the template after incorporation of acyclovir monophosphate into the 3'-end of the primer (Reardon, J. E., and Spector, T. (1989) J. Biol. Chem. 264, 7405-7411). This mechanism of inhibition of HSV-1 DNA polymerase has been used here to design an affinity column for the enzyme. A DNA hook template-primer containing an acyclovir monophosphate residue on the 3'-primer terminus has been synthesized and attached to a resin support. In the absence of added nucleotides, the column behaves as a simple DNA-agarose column, and HSV-1 DNA polymerase can be chromatographed using a salt gradient. The presence of the next required nucleotide encoded by the template (dGTP) increases the affinity of HSV-1 DNA polymerase for the acyclovir monophosphate terminal primer-template attached to the resin, and the enzyme is retained even in the presence of 1 M salt. The enzyme can be eluted from the column with a salt gradient after removal of the nucleotide from the buffer. Traditionally, the affinity purification of an enzyme relies on elution by a salt gradient, pH gradient, or more selectively by addition of a competing ligand (substrate/inhibitor) to the elution buffer. In the present example, elution of HSV-1 polymerase is facilitated by removal of the substrate from the buffer. This represents an example of mechanism-based affinity chromatography.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验