Suppr超能文献

调节 BACE1 构象的酪氨酸 71 作用。

The role of tyrosine 71 in modulating the flap conformations of BACE1.

机构信息

Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

Proteins. 2011 Jul;79(7):2247-59. doi: 10.1002/prot.23050. Epub 2011 May 16.

Abstract

β-Site amyloid precursor protein cleaving enzyme 1 (BACE1) is a potential target for treating Alzheimer's disease. BACE1's binding site is partially covered by a flexible loop on its N-terminal domain, known as the "flap," which has been found in several conformations in crystal structures of BACE1 and other aspartyl proteases. The side chain of the invariant residue Tyr71 on the flap adopts several rotameric orientations, leading to our hypothesis that the orientation of this residue dictates the movement and conformations available to the flap. We investigated this hypothesis by performing 220 ns of molecular dynamics simulations of bound and unbound wild-type BACE1 as well as the unbound Y71A mutant. Our findings indicate that the flap exhibits various degrees of mobility and adopts different conformations depending on the Tyr71 orientation. Surprisingly, the "self-inhibited" form is stable in our simulations, making it a reasonable target for drug design. The alanine mutant, lacking a large side chain at position 71, displays significant differences in flap dynamics from wild type, freely sampling very open and closed conformations. Our simulations show that Tyr71, in addition to its previously determined functions in catalysis and substrate binding, has the important role of modulating flap conformations in BACE1.

摘要

β- 位淀粉样前体蛋白裂解酶 1(BACE1)是治疗阿尔茨海默病的潜在靶点。BACE1 的结合位点部分被其 N 端结构域上的一个柔性环(称为“盖子”)覆盖,在 BACE1 和其他天冬氨酸蛋白酶的晶体结构中已经发现了几种构象。盖子上不变残基 Tyr71 的侧链采用几种旋转取向,这导致我们假设该残基的取向决定了盖子的运动和可用构象。我们通过对结合态和未结合态野生型 BACE1 以及未结合态 Y71A 突变体进行 220ns 的分子动力学模拟来研究这一假设。我们的研究结果表明,盖子的移动性和构象因 Tyr71 取向而异。令人惊讶的是,在我们的模拟中,“自我抑制”形式是稳定的,这使其成为药物设计的合理目标。缺乏位置 71 处大侧链的丙氨酸突变体与野生型相比,在盖子动力学方面表现出显著差异,可自由采样非常开放和封闭的构象。我们的模拟表明,Tyr71 除了其在催化和底物结合中的先前确定的功能外,还具有调节 BACE1 中盖子构象的重要作用。

相似文献

1
The role of tyrosine 71 in modulating the flap conformations of BACE1.
Proteins. 2011 Jul;79(7):2247-59. doi: 10.1002/prot.23050. Epub 2011 May 16.
2
Flexibility of the flap in the active site of BACE1 as revealed by crystal structures and molecular dynamics simulations.
Acta Crystallogr D Biol Crystallogr. 2012 Jan;68(Pt 1):13-25. doi: 10.1107/S0907444911047251. Epub 2011 Dec 9.
4
A comparative molecular dynamics study on BACE1 and BACE2 flap flexibility.
J Recept Signal Transduct Res. 2016 Oct;36(5):505-14. doi: 10.3109/10799893.2015.1130058. Epub 2016 Jan 24.
6
Conformational dynamics of cathepsin D and binding to a small-molecule BACE1 inhibitor.
J Comput Chem. 2017 Jun 5;38(15):1260-1269. doi: 10.1002/jcc.24719. Epub 2017 Apr 2.
7
Unravelling the molecular basis of AM-6494 high potency at BACE1 in Alzheimer's disease: an integrated dynamic interaction investigation.
J Biomol Struct Dyn. 2022 Aug;40(12):5253-5265. doi: 10.1080/07391102.2020.1869099. Epub 2021 Jan 7.
8
Molecular insights into the inhibitory mechanism of bi-functional bis-tryptoline triazole against β-secretase (BACE1) enzyme.
Amino Acids. 2019 Nov;51(10-12):1593-1607. doi: 10.1007/s00726-019-02797-0. Epub 2019 Oct 25.

引用本文的文献

1
Pepsin-like aspartic proteases (PAPs) as model systems for combining biomolecular simulation with biophysical experiments.
RSC Adv. 2021 Mar 17;11(18):11026-11047. doi: 10.1039/d0ra10359d. eCollection 2021 Mar 10.
2
Flap Dynamics in Pepsin-Like Aspartic Proteases: A Computational Perspective Using Plasmepsin-II and BACE-1 as Model Systems.
J Chem Inf Model. 2022 Feb 28;62(4):914-926. doi: 10.1021/acs.jcim.1c00840. Epub 2022 Feb 9.
3
From Kinase Inhibitors to Multitarget Ligands as Powerful Drug Leads for Alzheimer's Disease using Protein-Templated Synthesis.
Angew Chem Int Ed Engl. 2021 Aug 23;60(35):19344-19354. doi: 10.1002/anie.202106295. Epub 2021 Jul 26.
5
pH-dependent conformational dynamics of beta-secretase 1: A molecular dynamics study.
J Mol Recognit. 2019 Mar;32(3):e2765. doi: 10.1002/jmr.2765. Epub 2018 Sep 27.
6
Conformational dynamics of cathepsin D and binding to a small-molecule BACE1 inhibitor.
J Comput Chem. 2017 Jun 5;38(15):1260-1269. doi: 10.1002/jcc.24719. Epub 2017 Apr 2.
7
Conformational Dynamics and Binding Free Energies of Inhibitors of BACE-1: From the Perspective of Protonation Equilibria.
PLoS Comput Biol. 2015 Oct 27;11(10):e1004341. doi: 10.1371/journal.pcbi.1004341. eCollection 2015 Oct.
8
pH-Dependent Population Shift Regulates BACE1 Activity and Inhibition.
J Am Chem Soc. 2015 Aug 5;137(30):9543-6. doi: 10.1021/jacs.5b05891. Epub 2015 Jul 22.
10
β-Secretase: its biology as a therapeutic target in diseases.
Trends Pharmacol Sci. 2013 Apr;34(4):215-25. doi: 10.1016/j.tips.2013.01.008. Epub 2013 Feb 27.

本文引用的文献

2
Molecular shape and medicinal chemistry: a perspective.
J Med Chem. 2010 May 27;53(10):3862-86. doi: 10.1021/jm900818s.
3
Discovery of aminoheterocycles as a novel beta-secretase inhibitor class: pH dependence on binding activity part 1.
Bioorg Med Chem Lett. 2009 Jun 1;19(11):2977-80. doi: 10.1016/j.bmcl.2009.04.033. Epub 2009 Apr 18.
4
Fragment-based discovery of nonpeptidic BACE-1 inhibitors using tethering.
Biochemistry. 2009 Jun 2;48(21):4488-96. doi: 10.1021/bi900017q.
5
Crystal structure of an active form of BACE1, an enzyme responsible for amyloid beta protein production.
Mol Cell Biol. 2008 Jun;28(11):3663-71. doi: 10.1128/MCB.02185-07. Epub 2008 Mar 31.
7
Why does beta-secretase zymogen possess catalytic activity? Molecular modeling and molecular dynamics simulation studies.
Comput Biol Chem. 2007 Jun;31(3):186-95. doi: 10.1016/j.compbiolchem.2007.03.007. Epub 2007 Mar 30.
8
Alzheimer's disease.
Lancet. 2006 Jul 29;368(9533):387-403. doi: 10.1016/S0140-6736(06)69113-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验