Kim M Olivia, Blachly Patrick G, McCammon J Andrew
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America.
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America; Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America; Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, United States of America; National Biomedical Computation Resource, University of California San Diego, La Jolla, California, United States of America.
PLoS Comput Biol. 2015 Oct 27;11(10):e1004341. doi: 10.1371/journal.pcbi.1004341. eCollection 2015 Oct.
BACE-1 is the β-secretase responsible for the initial amyloidogenesis in Alzheimer's disease, catalyzing hydrolytic cleavage of substrate in a pH-sensitive manner. The catalytic mechanism of BACE-1 requires water-mediated proton transfer from aspartyl dyad to the substrate, as well as structural flexibility in the flap region. Thus, the coupling of protonation and conformational equilibria is essential to a full in silico characterization of BACE-1. In this work, we perform constant pH replica exchange molecular dynamics simulations on both apo BACE-1 and five BACE-1-inhibitor complexes to examine the effect of pH on dynamics and inhibitor binding properties of BACE-1. In our simulations, we find that solution pH controls the conformational flexibility of apo BACE-1, whereas bound inhibitors largely limit the motions of the holo enzyme at all levels of pH. The microscopic pKa values of titratable residues in BACE-1 including its aspartyl dyad are computed and compared between apo and inhibitor-bound states. Changes in protonation between the apo and holo forms suggest a thermodynamic linkage between binding of inhibitors and protons localized at the dyad. Utilizing our recently developed computational protocol applying the binding polynomial formalism to the constant pH molecular dynamics (CpHMD) framework, we are able to obtain the pH-dependent binding free energy profiles for various BACE-1-inhibitor complexes. Our results highlight the importance of correctly addressing the binding-induced protonation changes in protein-ligand systems where binding accompanies a net proton transfer. This work comprises the first application of our CpHMD-based free energy computational method to protein-ligand complexes and illustrates the value of CpHMD as an all-purpose tool for obtaining pH-dependent dynamics and binding free energies of biological systems.
β-分泌酶1(BACE-1)是负责阿尔茨海默病初始淀粉样蛋白生成的β-分泌酶,以pH敏感的方式催化底物的水解切割。BACE-1的催化机制需要水介导的质子从天冬氨酸二元组转移到底物,以及瓣区的结构灵活性。因此,质子化和构象平衡的耦合对于BACE-1的完整计算机模拟表征至关重要。在这项工作中,我们对无配体BACE-1和五种BACE-1-抑制剂复合物进行了恒定pH复制交换分子动力学模拟,以研究pH对BACE-1动力学和抑制剂结合特性的影响。在我们的模拟中,我们发现溶液pH控制无配体BACE-1的构象灵活性,而结合的抑制剂在所有pH水平上都在很大程度上限制了全酶的运动。计算并比较了BACE-1中包括其天冬氨酸二元组在内的可滴定残基的微观pKa值在无配体和抑制剂结合状态之间的差异。无配体和全酶形式之间质子化的变化表明抑制剂结合与位于二元组的质子之间存在热力学联系。利用我们最近开发的将结合多项式形式应用于恒定pH分子动力学(CpHMD)框架的计算协议,我们能够获得各种BACE-1-抑制剂复合物的pH依赖性结合自由能谱。我们的结果强调了在结合伴随着净质子转移的蛋白质-配体系统中正确处理结合诱导的质子化变化的重要性。这项工作首次将我们基于CpHMD的自由能计算方法应用于蛋白质-配体复合物,并说明了CpHMD作为获得生物系统pH依赖性动力学和结合自由能的通用工具的价值。