Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA.
Langmuir. 2011 Jun 21;27(12):7681-90. doi: 10.1021/la200659z. Epub 2011 May 17.
The ability of smaller than 100 nm antibody (Ab) nanoparticle conjugates to target and modulate the biology of specific cell types may enable major advancements in cellular imaging and therapy in cancer. A key challenge is to load a high degree of targeting, imaging, and therapeutic functionality into small, yet stable particles. A versatile method called thin autocatalytic growth on substrate (TAGs) has been developed in our previous study to form ultrathin and asymmetric gold coatings on iron oxide nanocluster cores producing exceptional near-infrared (NIR) absorbance. AlexaFluor 488 labeled Abs were used to correlate the number of Abs conjugated to iron oxide/gold nanoclusters (nanoroses) with the hydrodynamic size. A transition from submonolayer to multilayer aggregates of Abs on the nanorose surface was observed for 54 Abs and an overall particle diameter of ∼60-65 nm. The hydrodynamic diameter indicated coverage of a monolayer of 54 Abs, in agreement with the prediction of a geometric model, by assuming a circular footprint of 16.9 nm diameter per Ab molecule. The targeting efficacy of nanoclusters conjugated with monoclonal Abs specific for epidermal growth factor receptor (EGFR) was evaluated in A431 cancer cells using dark field microscopy and atomic absorbance spectrometry (AAS) analysis. Intense NIR scattering was achieved from both high uptake of nanoclusters in cells and high intrinsic NIR absorbance of individual nanoclusters. Dual mode imaging with dark field reflectance microscopy and fluorescence microscopy indicates the Abs remained attached to the Au surfaces upon the uptake by the cancer cells. The ability to load intense multifunctionality, specifically strong NIR absorbance, conjugation of an Ab monolayer in addition to a strong r2 MRI contrast that was previously demonstrated in a total particle size of only 63 nm, is an important step forward in development of theranostic agents for combined molecular specific imaging and therapy.
小于 100nm 的抗体 (Ab) 纳米颗粒缀合物能够靶向和调节特定细胞类型的生物学特性,这可能会推动癌症的细胞成像和治疗的重大进展。一个关键的挑战是将高度的靶向性、成像功能和治疗功能加载到小而稳定的颗粒中。我们之前的研究中开发了一种称为基底上的薄自催化生长(TAGs)的多功能方法,用于在氧化铁纳米团簇核上形成超薄且不对称的金涂层,从而产生优异的近红外(NIR)吸收。AlexaFluor 488 标记的 Ab 用于将与氧化铁/金纳米团簇(纳米玫瑰花)缀合的 Ab 数量与水动力大小相关联。在纳米玫瑰花表面上观察到从亚单层到 54 个 Ab 的多层聚集体的转变,并且总体颗粒直径约为 60-65nm。水动力直径表明,根据假设每个 Ab 分子的圆形足迹直径为 16.9nm,单层的 54 个 Ab 被覆盖。使用暗场显微镜和原子吸收光谱法(AAS)分析,评估了与表皮生长因子受体(EGFR)特异性的单克隆 Ab 缀合的纳米团簇在 A431 癌细胞中的靶向效率。通过细胞内高摄取纳米团簇和单个纳米团簇的高固有 NIR 吸收,实现了强烈的近红外散射。暗场反射显微镜和荧光显微镜的双模成像表明,Abs 在被癌细胞摄取后仍附着在 Au 表面上。在总粒径仅为 63nm 的情况下,能够加载强烈的多功能性,特别是强烈的近红外吸收、Ab 单层的缀合以及之前证明的强烈的 r2 MRI 对比,这是开发用于分子特异性成像和治疗联合的治疗剂的重要一步。