Department of Chemistry, Jackson State University, Jackson, Mississippi 39217, United States.
ACS Nano. 2012 Feb 28;6(2):1065-73. doi: 10.1021/nn2045246. Epub 2012 Jan 30.
Cancer is the greatest challenge in human healthcare today. Cancer causes 7.6 million deaths and economic losses of around 1 trillion dollars every year. Early diagnosis and effective treatment of cancer are crucial for saving lives. Driven by these needs, we report the development of a multifunctional plasmonic shell-magnetic core nanotechnology-driven approach for the targeted diagnosis, isolation, and photothermal destruction of cancer cells. Experimental data show that aptamer-conjugated plasmonic/magnetic nanoparticles can be used for targeted imaging and magnetic separation of a particular kind of cell from a mixture of different cancer cells. A targeted photothermal experiment using 670 nm light at 2.5 W/cm(2) for 10 min resulted selective irreparable cellular damage to most of the cancer cells. We also showed that the aptamer-conjugated magnetic/plasmonic nanoparticle-based photothermal destruction of cancer cells is highly selective. We discuss the possible mechanism and operating principle for the targeted imaging, separation, and photothermal destruction using magnetic/plasmonic nanotechnology.
癌症是当今人类健康面临的最大挑战。癌症每年导致 760 万人死亡和 1 万亿美元的经济损失。癌症的早期诊断和有效治疗对于挽救生命至关重要。基于这些需求,我们报告了一种多功能等离子壳-磁性核纳米技术驱动的方法的发展,用于癌症细胞的靶向诊断、分离和光热破坏。实验数据表明,适体偶联的等离子体/磁性纳米颗粒可用于从不同类型的癌细胞混合物中靶向成像和分离特定类型的细胞。使用 670nm 光在 2.5W/cm(2)下进行 10 分钟的靶向光热实验导致大多数癌细胞发生不可修复的选择性细胞损伤。我们还表明,基于适体偶联的磁性/等离子体纳米颗粒的光热破坏癌细胞具有高度选择性。我们讨论了使用磁性/等离子体纳米技术进行靶向成像、分离和光热破坏的可能机制和工作原理。