University Science Laboratories, Department of Chemistry, University of Durham, Durham, UK.
J Phys Chem B. 2011 Jun 9;115(22):7353-63. doi: 10.1021/jp201340j. Epub 2011 May 17.
Total internal reflection (TIR) Raman spectroscopy has been used to study the kinetics of adsorption, desorption, and displacement of mixed surfactant systems at the silica-water interface. The limited penetration depth of the evanescent wave provides surface sensitivity while the chemical sensitivity of Raman scattering permits the determination of the time-dependent composition of the adsorbed film. Principal component analysis is used to deconvolute the Raman spectra with a time resolution of 2 s and a precision of 5% of a monolayer. Both equilibrium and kinetic measurements are presented for the cetyltrimethylammonium bromide (CTAB)/Triton X-100 system over a range of concentrations and compositions. For a total concentration of 2 mM, the adsorption isotherm shows strong synergistic behavior with the addition of small amounts of CTAB (∼2% of the total surfactant) doubling the adsorbed amount of Triton X-100. This synergism has a marked influence on the kinetics: for example, when Triton X-100 replaces CTAB, the Triton X-100 surface excess overshoots its equilibrium value and returns only very slowly to equilibrium. For systems above the cmc, the repartitioning of surfactant between micelles and monomers results in unexpected behavior during exchange or rinsing of mixed surfactant solutions. For example, during rinsing, the more rapid diffusion of CTAB away from the surface leads to a local increase in the monomer concentration of Triton X-100, resulting in a temporary spike in the Triton X-100 surface excess. Displacement kinetics of CTAB by TX-100 and vice versa are generally slower than the adsorption or desorption of the pure surfactants but cover a wide range of kinetic time scales, depending on the details of the compositions and concentrations of the initial and final solutions.
全内反射(TIR)拉曼光谱已被用于研究混合表面活性剂体系在二氧化硅-水界面上的吸附、解吸和置换动力学。消逝波的有限穿透深度提供了表面灵敏度,而拉曼散射的化学灵敏度则允许确定吸附膜的时变组成。主成分分析用于在 2 秒的时间分辨率和 5%单层精度的情况下对拉曼光谱进行卷积分解。本文介绍了 CTAB/Triton X-100 体系在不同浓度和组成范围内的平衡和动力学测量结果。在总浓度为 2 mM 的情况下,吸附等温线显示出与少量 CTAB(约占总表面活性剂的 2%)添加时具有强烈的协同作用,使 Triton X-100 的吸附量增加了一倍。这种协同作用对动力学有显著影响:例如,当 Triton X-100 取代 CTAB 时,Triton X-100 的表面过剩超过其平衡值,并且仅非常缓慢地回到平衡。对于超过 cmc 的体系,表面活性剂在胶束和单体之间的重新分配导致在混合表面活性剂溶液的交换或冲洗过程中出现意外行为。例如,在冲洗过程中,CTAB 从表面更快地扩散,导致 Triton X-100 的单体浓度局部增加,从而导致 Triton X-100 表面过剩暂时增加。CTAB 被 TX-100 置换和反之亦然的置换动力学通常比纯表面活性剂的吸附或解吸慢,但覆盖了广泛的动力学时间范围,具体取决于初始和最终溶液的组成和浓度的细节。