Department of Chemistry, University Science Laboratories, Durham University, Durham, UK.
J Phys Chem B. 2011 Jun 9;115(22):7341-52. doi: 10.1021/jp201338s. Epub 2011 May 17.
Total internal reflection Raman spectroscopy provides a sensitive probe of surfactants adsorbed at an interface. A visible laser passes through a silica hemisphere and reflects off the flat silica-water interface. An evanescent wave probes ∼100 nm of solution below the surface, and the Raman scattering from this region provides chemically specific information on the molecules present. Here we look at both equilibrium and kinetic aspects of the adsorption of the cationic surfactant cetyltrimethylammonium bromide (CTAB) and the nonionic surfactant Triton X-100 in single-component systems. We use the well-defined wall jet geometry to provide known hydrodynamics for the adsorption process. The well-defined hydrodynamics allows us to model the mass transport of surfactant to the surface which is coupled with a kinetic model consistent with the Frumkin isotherm to produce a complete model of the adsorption process. The fit between this model and the experimental results provides insight into the interactions on the surface.
全内反射拉曼光谱提供了一种灵敏的探针,可以探测吸附在界面上的表面活性剂。可见激光穿过二氧化硅半球体并从平坦的二氧化硅-水界面反射。消逝波探测表面以下约 100nm 的溶液,来自该区域的拉曼散射提供了关于存在的分子的化学特异性信息。在这里,我们研究了阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)和非离子表面活性剂 Triton X-100 在单一组分系统中的平衡和动力学方面。我们使用定义良好的壁射流几何形状为吸附过程提供已知的流体动力学。定义良好的流体动力学允许我们模拟表面活性剂向表面的传质,这与符合 Frumkin 等温线的动力学模型相结合,从而产生吸附过程的完整模型。该模型与实验结果之间的拟合提供了对表面相互作用的深入了解。