Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
J Phys Chem A. 2011 Jun 9;115(22):5654-9. doi: 10.1021/jp202327z. Epub 2011 May 17.
State-of-the-art relativistic four-component DFT-GIAO-based calculations of (1)H NMR chemical shifts of a series of 3d, 4d, and 5d transition-metal hydrides have revealed significant spin-orbit-induced heavy atom effects on the hydride shifts, in particular for several 4d and 5d complexes. The spin-orbit (SO) effects provide substantial, in some cases even the dominant, contributions to the well-known characteristic high-field hydride shifts of complexes with a partially filled d-shell, and thereby augment the Buckingham-Stephens model of off-center paramagnetic ring currents. In contrast, complexes with a 4d(10) and 5d(10) configuration exhibit large deshielding SO effects on their hydride (1)H NMR shifts. The differences between the two classes of complexes are attributed to the dominance of π-type d-orbitals for the true transition-metal systems compared to σ-type orbitals for the d(10) systems.
采用基于相对论的四分量 DFT-GIAO 方法对一系列 3d、4d 和 5d 过渡金属氢化物的 (1)H NMR 化学位移进行了最先进的计算,结果表明,自旋轨道效应对氢化物位移有显著影响,特别是对一些 4d 和 5d 配合物。自旋轨道(SO)效应对部分填满 d 壳层的配合物的特征高场氢化物位移提供了实质性的、在某些情况下甚至是主要的贡献,从而增强了 Buckingham-Stephens 模型的非中心顺磁环电流。相比之下,4d(10)和 5d(10)构型的配合物对其氢化物 (1)H NMR 位移表现出较大的去屏蔽 SO 效应。这两类配合物之间的差异归因于对于真正的过渡金属体系,π 型 d 轨道占主导地位,而对于 d(10)体系,σ 型轨道占主导地位。