Suppr超能文献

相对论性自旋轨道重原子对轻原子 NMR 化学位移的影响:解释整个周期表的一般趋势。

Relativistic Spin-Orbit Heavy Atom on the Light Atom NMR Chemical Shifts: General Trends Across the Periodic Table Explained.

机构信息

Center of Polymer Systems , University Institute, Tomas Bata University in Zlín , Třída T. Bati, 5678 , CZ-76001 , Zlín , Czech Republic.

Institute of Inorganic Chemistry , Slovak Academy of Science , Dúbravská cesta 9 , SK-84536 Bratislava , Slovakia.

出版信息

J Chem Theory Comput. 2018 Jun 12;14(6):3025-3039. doi: 10.1021/acs.jctc.8b00144. Epub 2018 May 10.

Abstract

The importance of relativistic effects on the NMR parameters in heavy-atom (HA) compounds, particularly the SO-HALA (Spin-Orbit Heavy Atom on the Light Atom) effect on NMR chemical shifts, has been known for about 40 years. Yet, a general correlation between the electronic structure and SO-HALA effect has been missing. By analyzing H NMR chemical shifts of the sixth-period hydrides (Cs-At), we discovered general electronic-structure principles and mechanisms that dictate the size and sign of the SO-HALA NMR chemical shifts. In brief, partially occupied HA valence shells induce relativistic shielding at the light atom (LA) nuclei, while empty HA valence shells induce relativistic deshielding. In particular, the LA nucleus is relativistically shielded in 5d-5d and 6p HA hydrides and deshielded in 4f, 5d, 6s, and 6p HA hydrides. This general and intuitive concept explains periodic trends in the H NMR chemical shifts along the sixth-period hydrides (Cs-At) studied in this work. We present substantial evidence that the introduced principles have a general validity across the periodic table and can be extended to nonhydride LAs. The decades-old question of why compounds with occupied frontier π molecular orbitals (MOs) cause SO-HALA shielding at the LA nuclei, while the frontier σ MOs cause deshielding is answered. We further derive connection between the SO-HALA NMR chemical shifts and Spin-Orbit-induced Electron Deformation Density (SO-EDD), a property that can be obtained easily from differential electron densities and can be represented graphically. SO-EDD provides an intuitive understanding of the SO-HALA effect in terms of the depletion/concentration of the electron density at LA nuclei caused by spin-orbit coupling due to HA in the presence of a magnetic field. Using an analogy between the SO-EDD concept and arguments from classic NMR theory, the complex question of the SO-HALA NMR chemical shifts becomes easily understandable for a wide chemical audience.

摘要

重原子(HA)化合物中核磁共振(NMR)参数的相对论效应的重要性,特别是自旋轨道重原子(SO-HALA)对 NMR 化学位移的影响,已经被人们认识了大约 40 年。然而,电子结构与 SO-HALA 效应之间的一般相关性仍然缺失。通过分析第六周期氢化物(Cs-At)的 H NMR 化学位移,我们发现了决定 SO-HALA NMR 化学位移大小和符号的一般电子结构原理和机制。简而言之,部分占据的 HA 价壳层在轻原子(LA)核上诱导相对论屏蔽,而空的 HA 价壳层诱导相对论去屏蔽。特别是,在 5d-5d 和 6p HA 氢化物中,LA 核受到相对论屏蔽,而在 4f、5d、6s 和 6p HA 氢化物中,LA 核受到相对论去屏蔽。这个一般而直观的概念解释了我们在这项工作中研究的第六周期氢化物(Cs-At)沿周期表的 H NMR 化学位移的周期性趋势。我们提供了大量证据表明,所引入的原理在整个元素周期表中具有普遍有效性,并且可以扩展到非氢化物 LA。几十年来,人们一直想知道为什么具有占据前沿π分子轨道(MO)的化合物会导致 LA 核上的 SO-HALA 屏蔽,而前沿σ MO 会导致去屏蔽,这个问题得到了回答。我们进一步将 SO-HALA NMR 化学位移与自旋轨道诱导电子变形密度(SO-EDD)联系起来,后者是一种可以从差分电子密度中轻松获得的性质,并且可以图形化表示。SO-EDD 从自旋轨道耦合的角度,通过 HA 在磁场中引起的 LA 核上电子密度的损耗/集中,提供了对 SO-HALA 效应的直观理解。利用 SO-EDD 概念与经典 NMR 理论之间的类比,对于广大化学工作者来说,SO-HALA NMR 化学位移的复杂问题变得易于理解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验