Suppr超能文献

基于离子液体的锂电池电解质:通过密度泛函理论计算得到的电荷载流子和相互作用。

Ionic liquid based lithium battery electrolytes: charge carriers and interactions derived by density functional theory calculations.

机构信息

Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.

出版信息

J Phys Chem B. 2011 Jun 23;115(24):7808-13. doi: 10.1021/jp2036108. Epub 2011 Jun 1.

Abstract

The solvation of lithium salts in ionic liquids (ILs) leads to the creation of a lithium ion carrying species quite different from those found in traditional nonaqueous lithium battery electrolytes. The most striking differences are that these species are composed only of ions and in general negatively charged. In many IL-based electrolytes, the dominant species are triplets, and the charge, stability, and size of the triplets have a large impact on the total ion conductivity, the lithium ion mobility, and also the lithium ion delivery at the electrode. As an inherent advantage, the triplets can be altered by selecting lithium salts and ionic liquids with different anions. Thus, within certain limits, the lithium ion carrying species can even be tailored toward distinct important properties for battery application. Here, we show by DFT calculations that the resulting charge carrying species from combinations of ionic liquids and lithium salts and also some resulting electrolyte properties can be predicted.

摘要

锂离子盐在离子液体(ILs)中的溶剂化作用导致了锂离子携带物种的形成,这些物种与传统的非水电解质中的锂离子携带物种有很大的不同。最显著的区别是,这些物种仅由离子组成,通常带负电荷。在许多基于 IL 的电解质中,主要物种是三聚体,三聚体的电荷、稳定性和大小对总离子电导率、锂离子迁移率以及电极处的锂离子传递有很大的影响。作为一个固有优势,三聚体可以通过选择具有不同阴离子的锂盐和离子液体来改变。因此,在一定范围内,锂离子携带物种甚至可以根据电池应用的不同重要特性进行定制。在这里,我们通过 DFT 计算表明,离子液体和锂盐的组合产生的电荷携带物种以及一些电解质的特性可以得到预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验