National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P. R. China.
ACS Nano. 2011 Jun 28;5(6):4448-54. doi: 10.1021/nn2016524. Epub 2011 May 23.
Hexagonal hierarchical microtubular structures are produced by diphenylalanine self-assembly and the ratio of the relative humidity in the growth chamber to the diphenylalanine concentration (defined as the RH-FF ratio) determines the microtubular morphology. The hexagonal arrangement of the diphenylalanine molecules first induces the hexagonal nanotubes with opposite charges on the two ends, and the dipolar electric field on the nanotubes serves as the driving force. Side-by-side hexagonal aggregation and end-to-end arrangement ensue finally producing a hexagonal hierarchical microtubular structure. Staining experiments and the external electric field-induced parallel arrangement provide evidence of the existence of opposite charges and dipolar electric field. In this self-assembly, the different RH-FF ratios induce different contents of crystalline phases. This leads to different initial nanotube numbers finally yielding different microtubular morphologies. Our calculation based on the dipole model supports the dipole-field mechanism that leads to the different microtubular morphologies.
六方分层微管结构是由二苯丙氨酸自组装产生的,生长室内的相对湿度与二苯丙氨酸浓度的比值(定义为 RH-FF 比)决定了微管的形态。二苯丙氨酸分子的六方排列首先诱导出两端带相反电荷的六方纳米管,纳米管上的偶极电场作为驱动力。最终,通过并排的六方聚集和端对端排列,形成了六方分层微管结构。染色实验和外加电场诱导的平行排列为相反电荷和偶极电场的存在提供了证据。在这种自组装中,不同的 RH-FF 比值会诱导出不同含量的晶相。这导致了不同数量的初始纳米管,最终产生了不同的微管形态。我们基于偶极子模型的计算支持了导致不同微管形态的偶极子场机制。