Suppr超能文献

基于决策的速度斜坡,用于最小化实时模式识别控制中误分类的影响。

A decision-based velocity ramp for minimizing the effect of misclassifications during real-time pattern recognition control.

出版信息

IEEE Trans Biomed Eng. 2011 Aug;58(8). doi: 10.1109/TBME.2011.2155063. Epub 2011 May 16.

Abstract

Real-time pattern recognition control is frequently affected by misclassifications. This study investigated the use of a decision-based velocity ramp that attenuated movement speed after a change in classifier decision. The goal was to improve prosthesis positioning by minimizing the effect of unintended movements. Non-amputee and amputee subjects controlled a prosthesis in real-time using pattern recognition. While performing a target achievement test in a virtual environment, subjects had a significantly higher completion rate (p < 0.05) and a more direct path (p < 0.05) to the target with the velocity ramp than without it. Using a physical prosthesis, subjects stacked a greater average number of 1 cubes (p < 0.05) in three minutes with the velocity ramp than without it (76% more blocks for non-amputees; 89% more blocks for amputees). Real-time control using the velocity ramp also showed significant performance improvements above using majority vote. Eighty-three percent of subjects preferred to control the prosthesis using the velocity ramp. These results suggest that using a decision-based velocity ramp with pattern recognition may improve user performance. Since the velocity ramp is a post-processing step, it has the potential to be used with a variety of classifiers for many applications.

摘要

实时模式识别控制经常受到误分类的影响。本研究探讨了使用基于决策的速度斜坡的方法,即在分类器决策发生变化后减缓运动速度。目的是通过最小化意外运动的影响来改善假体定位。非截肢者和截肢者受试者使用模式识别实时控制假肢。在虚拟环境中进行目标达成测试时,与没有速度斜坡的情况相比,受试者的完成率(p < 0.05)更高,达到目标的路径更直接(p < 0.05)。使用物理假肢,与没有速度斜坡的情况相比,受试者在三分钟内堆叠的 1 号方块的平均数量更多(非截肢者多 76%;截肢者多 89%)。使用速度斜坡进行实时控制也显示出比使用多数表决有显著的性能提升。83%的受试者更喜欢使用速度斜坡来控制假肢。这些结果表明,使用基于决策的速度斜坡与模式识别相结合可能会提高用户的性能。由于速度斜坡是一个后处理步骤,因此它有可能用于许多应用的各种分类器。

相似文献

5
Online Segmentation of Human Motion for Automated Rehabilitation Exercise Analysis.用于自动康复运动分析的人体运动在线分割
IEEE Trans Neural Syst Rehabil Eng. 2014 Jan;22(1):168-80. doi: 10.1109/TNSRE.2013.2259640. Epub 2013 May 2.
7
Myoelectric walking mode classification for transtibial amputees.用于小腿截肢者的肌电行走模式分类。
IEEE Trans Biomed Eng. 2013 Oct;60(10):2745-50. doi: 10.1109/TBME.2013.2264466. Epub 2013 May 21.
9
Online electromyographic control of a robotic prosthesis.机器人假肢的在线肌电图控制
IEEE Trans Biomed Eng. 2008 Mar;55(3):1128-35. doi: 10.1109/TBME.2007.909536.

引用本文的文献

3
Electromyography-Based Control of Lower Limb Prostheses: A Systematic Review.基于肌电图的下肢假肢控制:系统综述
IEEE Trans Med Robot Bionics. 2023 Aug;5(3):547-562. doi: 10.1109/tmrb.2023.3282325. Epub 2023 Jun 7.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验