文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Myoelectric Control in Rehabilitative and Assistive Soft Exoskeletons: A Comprehensive Review of Trends, Challenges, and Integration with Soft Robotic Devices.

作者信息

Toro-Ossaba Alejandro, Tejada Juan C, Sanin-Villa Daniel

机构信息

Artificial Intelligence and Robotics Research Group (IAR), Universidad EIA, Envigado 055428, Colombia.

Department of Engineering Studies for Innovation, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Colonia Lomas de Santa Fé, Ciudad de México 01219, Mexico.

出版信息

Biomimetics (Basel). 2025 Apr 1;10(4):214. doi: 10.3390/biomimetics10040214.


DOI:10.3390/biomimetics10040214
PMID:40277613
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12024817/
Abstract

Soft robotic exoskeletons have emerged as a transformative solution for rehabilitation and assistance, offering greater adaptability and comfort than rigid designs. Myoelectric control, based on electromyography (EMG) signals, plays a key role in enabling intuitive and adaptive interaction between the user and the exoskeleton. This review analyzes recent advancements in myoelectric control strategies, emphasizing their integration into soft robotic exoskeletons. Unlike previous studies, this work highlights the unique challenges posed by the deformability and compliance of soft structures, requiring novel approaches to motion intention estimation and control. Key contributions include critically evaluating machine learning-based motion prediction, model-free adaptive control methods, and real-time validation strategies to enhance rehabilitation outcomes. Additionally, we identify persistent challenges such as EMG signal variability, computational complexity, and the real-time adaptability of control algorithms, which limit clinical implementation. By interpreting recent trends, this review highlights the need for improved EMG acquisition techniques, robust adaptive control frameworks, and enhanced real-time learning to optimize human-exoskeleton interaction. Beyond summarizing the state of the art, this work provides an in-depth discussion of how myoelectric control can advance rehabilitation by ensuring more responsive and personalized exoskeleton assistance. Future research should focus on refining control schemes tailored to soft robotic architectures, ensuring seamless integration into rehabilitation protocols. This review is a foundation for developing intelligent soft exoskeletons that effectively support motor recovery and assistive applications.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f614/12024817/4a3531d07e4d/biomimetics-10-00214-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f614/12024817/0b3e3d67ff9c/biomimetics-10-00214-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f614/12024817/1f11d0e04a7b/biomimetics-10-00214-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f614/12024817/54cac3f05f5b/biomimetics-10-00214-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f614/12024817/9ddea17248ff/biomimetics-10-00214-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f614/12024817/036ecbfb5a70/biomimetics-10-00214-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f614/12024817/721937676f63/biomimetics-10-00214-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f614/12024817/d9d435d1e5dd/biomimetics-10-00214-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f614/12024817/4a3531d07e4d/biomimetics-10-00214-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f614/12024817/0b3e3d67ff9c/biomimetics-10-00214-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f614/12024817/1f11d0e04a7b/biomimetics-10-00214-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f614/12024817/54cac3f05f5b/biomimetics-10-00214-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f614/12024817/9ddea17248ff/biomimetics-10-00214-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f614/12024817/036ecbfb5a70/biomimetics-10-00214-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f614/12024817/721937676f63/biomimetics-10-00214-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f614/12024817/d9d435d1e5dd/biomimetics-10-00214-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f614/12024817/4a3531d07e4d/biomimetics-10-00214-g008.jpg

相似文献

[1]
Myoelectric Control in Rehabilitative and Assistive Soft Exoskeletons: A Comprehensive Review of Trends, Challenges, and Integration with Soft Robotic Devices.

Biomimetics (Basel). 2025-4-1

[2]
Myoelectric Control Systems for Upper Limb Wearable Robotic Exoskeletons and Exosuits-A Systematic Review.

Sensors (Basel). 2022-10-24

[3]
Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.

J Neuroeng Rehabil. 2015-11-4

[4]
Preliminary Validation of Proportional Myoelectric Control of A Commercially Available Robotic Ankle Exoskeleton.

IEEE Int Conf Rehabil Robot. 2022-7

[5]
Moving toward Soft Robotics: A Decade Review of the Design of Hand Exoskeletons.

Biomimetics (Basel). 2018-7-18

[6]
Robust Torque Predictions From Electromyography Across Multiple Levels of Active Exoskeleton Assistance Despite Non-linear Reorganization of Locomotor Output.

Front Neurorobot. 2021-11-3

[7]
A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation.

J Hand Ther. 2020

[8]
The-state-of-the-art of soft robotics to assist mobility: a review of physiotherapist and patient identified limitations of current lower-limb exoskeletons and the potential soft-robotic solutions.

J Neuroeng Rehabil. 2023-1-30

[9]
Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: a systematic review and analysis of clinical effectiveness.

J Neuroeng Rehabil. 2023-2-19

[10]
Assistance Robotics and Biosensors 2019.

Sensors (Basel). 2020-2-29

本文引用的文献

[1]
Machine Learning- and Deep Learning-Based Myoelectric Control System for Upper Limb Rehabilitation Utilizing EEG and EMG Signals: A Systematic Review.

Bioengineering (Basel). 2025-2-3

[2]
A review of soft wearable robots that provide active assistance: Trends, common actuation methods, fabrication, and applications.

Wearable Technol. 2020-9-14

[3]
Myoelectric Control Systems for Upper Limb Wearable Robotic Exoskeletons and Exosuits-A Systematic Review.

Sensors (Basel). 2022-10-24

[4]
Soft Wearable Robots: Development Status and Technical Challenges.

Sensors (Basel). 2022-10-6

[5]
Upper limb soft robotic wearable devices: a systematic review.

J Neuroeng Rehabil. 2022-8-10

[6]
Trajectory Tracking within a Hierarchical Primitive-Based Learning Approach.

Entropy (Basel). 2022-6-28

[7]
Estimation of the Continuous Pronation-Supination Movement by Using Multichannel EMG Signal Features and Kalman Filter: Application to Control an Exoskeleton.

Front Bioeng Biotechnol. 2022-3-1

[8]
Beyond Soft Hands: Efficient Grasping With Non-Anthropomorphic Soft Grippers.

Front Robot AI. 2021-7-7

[9]
Intramuscular EMG-Driven Musculoskeletal Modelling: Towards Implanted Muscle Interfacing in Spinal Cord Injury Patients.

IEEE Trans Biomed Eng. 2022-1

[10]
An Assistive Soft Wrist Exosuit for Flexion Movements With an Ergonomic Reinforced Glove.

Front Robot AI. 2021-1-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索