Suppr超能文献

关于生物素羧化酶受底物抑制和二聚化调节的结构和生化研究。

Structural and biochemical studies on the regulation of biotin carboxylase by substrate inhibition and dimerization.

机构信息

Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan.

出版信息

J Biol Chem. 2011 Jul 8;286(27):24417-25. doi: 10.1074/jbc.M111.220517. Epub 2011 May 18.

Abstract

Biotin carboxylase (BC) activity is shared among biotin-dependent carboxylases and catalyzes the Mg-ATP-dependent carboxylation of biotin using bicarbonate as the CO(2) donor. BC has been studied extensively over the years by structural, kinetic, and mutagenesis analyses. Here we report three new crystal structures of Escherichia coli BC at up to 1.9 Å resolution, complexed with different ligands. Two structures are wild-type BC in complex with two ADP molecules and two Ca(2+) ions or two ADP molecules and one Mg(2+) ion. One ADP molecule is in the position normally taken by the ATP substrate, whereas the other ADP molecule occupies the binding sites of bicarbonate and biotin. One Ca(2+) ion and the Mg(2+) ion are associated with the ADP molecule in the active site, and the other Ca(2+) ion is coordinated by Glu-87, Glu-288, and Asn-290. Our kinetic studies confirm that ATP shows substrate inhibition and that this inhibition is competitive against bicarbonate. The third structure is on the R16E mutant in complex with bicarbonate and Mg-ADP. Arg-16 is located near the dimer interface. The R16E mutant has only a 2-fold loss in catalytic activity compared with the wild-type enzyme. Analytical ultracentrifugation experiments showed that the mutation significantly destabilized the dimer, although the presence of substrates can induce dimer formation. The binding modes of bicarbonate and Mg-ADP are essentially the same as those to the wild-type enzyme. However, the mutation greatly disrupted the dimer interface and caused a large re-organization of the dimer. The structures of these new complexes have implications for the catalysis by BC.

摘要

生物素羧化酶(BC)活性存在于依赖生物素的羧化酶中,可利用碳酸氢盐作为 CO2 供体,催化生物素的 Mg-ATP 依赖性羧化。多年来,人们通过结构、动力学和诱变分析对 BC 进行了广泛的研究。在这里,我们报道了三种新的大肠杆菌 BC 晶体结构,分辨率高达 1.9 Å,与不同的配体复合。其中两种结构是野生型 BC 分别与两个 ADP 分子和两个 Ca2+离子或两个 ADP 分子和一个 Mg2+离子复合。一个 ADP 分子占据了 ATP 底物的正常位置,而另一个 ADP 分子占据了碳酸氢盐和生物素的结合位点。一个 Ca2+离子和 Mg2+离子与活性部位的 ADP 分子结合,另一个 Ca2+离子由 Glu-87、Glu-288 和 Asn-290 配位。我们的动力学研究证实 ATP 表现出底物抑制作用,这种抑制作用对碳酸氢盐是竞争性的。第三种结构是 R16E 突变体与碳酸氢盐和 Mg-ADP 复合的结构。Arg-16 位于二聚体界面附近。与野生型酶相比,R16E 突变体的催化活性仅降低了 2 倍。分析超速离心实验表明,该突变显著降低了二聚体的稳定性,尽管底物的存在可以诱导二聚体的形成。碳酸氢盐和 Mg-ADP 的结合方式与野生型酶基本相同。然而,突变极大地破坏了二聚体界面,导致二聚体的大规模重组。这些新复合物的结构对 BC 的催化作用具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验