Suppr超能文献

丙酸血症和甲基巴豆酰甘氨酸尿症中发现的突变的动力学特征:生物素羧化酶协同作用的证据。

Kinetic characterization of mutations found in propionic acidemia and methylcrotonylglycinuria: evidence for cooperativity in biotin carboxylase.

作者信息

Sloane Valerie, Waldrop Grover L

机构信息

Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana 70803, USA.

出版信息

J Biol Chem. 2004 Apr 16;279(16):15772-8. doi: 10.1074/jbc.M311982200. Epub 2004 Feb 11.

Abstract

Acetyl-CoA carboxylase catalyzes the committed step in fatty acid synthesis in all plants, animals, and bacteria. The Escherichia coli form is a multifunctional enzyme consisting of three separate proteins: biotin carboxylase, carboxyltransferase, and the biotin carboxyl carrier protein. The biotin carboxylase component, which catalyzes the ATP-dependent carboxylation of biotin using bicarbonate as the carboxylate source, has a homologous functionally identical subunit in the mammalian biotin-dependent enzymes propionyl-CoA carboxylase and 3-methylcrotonyl-CoA carboxylase. In humans, mutations in either of these enzymes result in the metabolic deficiency propionic acidemia or methylcrotonylglycinuria. The lack of a system for structure-function studies of these two biotin-dependent carboxylases has prevented a detailed analysis of the disease-causing mutations. However, structural data are available for E. coli biotin carboxylase as is a system for its overexpression and purification. Thus, we have constructed three site-directed mutants of biotin carboxylase that are homologous to three missense mutations found in propionic acidemia or methylcrotonylglycinuria patients. The mutants M169K, R338Q, and R338S of E. coli biotin carboxylase were selected for study to mimic the disease-causing mutations M204K and R374Q of propionyl-CoA carboxylase and R385S of 3-methylcrotonyl-CoA carboxylase. These three mutants were subjected to a rigorous kinetic analysis to determine the function of the residues in the catalytic mechanism of biotin carboxylase as well as to establish a molecular basis for the two diseases. The results of the kinetic studies have revealed the first evidence for negative cooperativity with respect to bicarbonate and suggest that Arg-338 serves to orient the carboxyphosphate intermediate for optimal carboxylation of biotin.

摘要

乙酰辅酶A羧化酶催化所有植物、动物和细菌脂肪酸合成的关键步骤。大肠杆菌中的该酶是一种多功能酶,由三种不同的蛋白质组成:生物素羧化酶、羧基转移酶和生物素羧基载体蛋白。生物素羧化酶组分利用碳酸氢盐作为羧基来源催化生物素的ATP依赖性羧化反应,在哺乳动物的生物素依赖性酶丙酰辅酶A羧化酶和3-甲基巴豆酰辅酶A羧化酶中具有同源的功能相同的亚基。在人类中,这两种酶中任何一种发生突变都会导致代谢缺陷丙酸血症或甲基巴豆酰甘氨酸尿症。缺乏对这两种生物素依赖性羧化酶进行结构-功能研究的系统,阻碍了对致病突变的详细分析。然而,大肠杆菌生物素羧化酶的结构数据以及其过表达和纯化系统是可用的。因此,我们构建了生物素羧化酶的三个定点突变体,它们与丙酸血症或甲基巴豆酰甘氨酸尿症患者中发现的三个错义突变同源。选择大肠杆菌生物素羧化酶的突变体M169K、R338Q和R338S进行研究,以模拟丙酰辅酶A羧化酶的致病突变M204K和R374Q以及3-甲基巴豆酰辅酶A羧化酶的R385S。对这三个突变体进行了严格的动力学分析,以确定生物素羧化酶催化机制中残基的功能,并为这两种疾病建立分子基础。动力学研究结果揭示了关于碳酸氢盐的负协同性的首个证据,并表明精氨酸-338用于使羧基磷酸中间体定向,以实现生物素的最佳羧化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验