Department of Biology, Texas A & M University, College Station, Texas 77843-3258, USA.
J Neurosci. 2011 May 18;31(20):7497-510. doi: 10.1523/JNEUROSCI.6153-10.2011.
Many evolutionarily significant behaviors, such as mating, involve dynamic interactions with animate targets. This raises the question of what features of neural circuit design are essential to support these complex types of behavior. The Caenorhabditis elegans male uses 18 ray sensilla of the tail to coordinate mate apposition behavior, which facilitates a systematic search of the hermaphrodite surface for the vulva. Precisely how ray neuron types, A and B, robustly endow the male with a high degree of spatial and temporal precision is unknown. We show that the appositional postures that drive the search trajectory reflect the complex interplay of ray neuron type-induced motor outputs. Cell-type-specific ablations reveal that the A-neurons are required for all appositional postures. Their activity is instructive because the A-neurons can induce scanning- and turning-like appositional postures when artificially activated with channel rhodopsin (ChR2). B-neurons are essential only for initiation of the behavior in which they enhance male responsiveness to hermaphrodite contact. When artificially activated using ChR2, A- and B-neurons produce different tail ventral curl postures. However, when coactivated, A-neuron posture dominates, limiting B-neuron contributions to initiation or subsequent postures. Significantly, males lacking the majority of rays retain a high degree of postural control, indicating significant functional resilience in the system. Furthermore, eliminating a large number of male-specific ray neuron targets only partially attenuates tail posture control revealing that gender-common cells make an important contribution to the behavior. Thus, robustness may be a crucial feature of circuits underlying complex behaviors, such as mating, even in simple animals.
许多进化上重要的行为,如交配,涉及与有生命的目标的动态相互作用。这就提出了一个问题,即神经回路设计的哪些特征对于支持这些复杂类型的行为是必不可少的。秀丽隐杆线虫雄性利用 18 根尾部射线感觉器来协调交配贴合行为,这有助于对雌雄同体表面进行系统搜索寻找阴门。射线神经元类型 A 和 B 如何精确地赋予雄性高度的时空精度尚不清楚。我们发现,驱动搜索轨迹的贴合姿势反映了射线神经元类型诱导的运动输出的复杂相互作用。细胞类型特异性消融显示 A 神经元是所有贴合姿势所必需的。它们的活动具有指导意义,因为 A 神经元可以在人工激活通道视紫红质(ChR2)时诱导扫描和转弯样贴合姿势。B 神经元仅对其增强雄性对雌雄同体接触的反应的行为的起始是必需的。当使用 ChR2 人工激活时,A 和 B 神经元产生不同的尾部腹侧卷曲姿势。然而,当共同激活时,A 神经元姿势占主导地位,限制 B 神经元对起始或后续姿势的贡献。重要的是,缺少大部分射线的雄性保留了高度的姿势控制,表明该系统具有显著的功能弹性。此外,消除大量雄性特异性射线神经元靶标仅部分减弱了尾部姿势控制,表明性别共同细胞对该行为做出了重要贡献。因此,稳健性可能是复杂行为(如交配)背后的电路的一个关键特征,即使在简单的动物中也是如此。