Suppr超能文献

突触前膜电位对电突触与化学突触传递的影响。

Effect of presynaptic membrane potential on electrical vs. chemical synaptic transmission.

机构信息

Fishberg Department of Neuroscience and Friedman Brain Institute, Mt. Sinai School of Medicine, New York, NY 10029, USA.

出版信息

J Neurophysiol. 2011 Aug;106(2):680-9. doi: 10.1152/jn.00340.2011. Epub 2011 May 18.

Abstract

The growing realization that electrical coupling is present in the mammalian brain has sparked renewed interest in determining its functional significance and contrasting it with chemical transmission. One question of interest is whether the two types of transmission can be selectively regulated, e.g., if a cell makes both types of connections can electrical transmission occur in the absence of chemical transmission? We explore this issue in an experimentally advantageous preparation. B21, the neuron we study, is an Aplysia sensory neuron involved in feeding that makes electrical and chemical connections with other identified cells. Previously we demonstrated that chemical synaptic transmission is membrane potential dependent. It occurs when B21 is centrally depolarized prior to and during peripheral activation, but does not occur if B21 is peripherally activated at its resting membrane potential. In this article we study effects of membrane potential on electrical transmission. We demonstrate that maximal potentiation occurs in different voltage ranges for the two types of transmission, with potentiation of electrical transmission occurring at more hyperpolarized potentials (i.e., requiring less central depolarization). Furthermore, we describe a physiologically relevant type of stimulus that induces both spiking and an envelope of depolarization in the somatic region of B21. This depolarization does not induce functional chemical synaptic transmission but is comparable to the depolarization needed to maximally potentiate electrical transmission. In this study we therefore characterize a situation in which electrical and chemical transmission can be selectively controlled by membrane potential.

摘要

越来越多的人认识到电耦合存在于哺乳动物的大脑中,这激发了人们重新研究其功能意义,并将其与化学传递进行对比。一个有趣的问题是,这两种类型的传递是否可以选择性地调节,例如,如果一个细胞同时产生这两种连接,那么在没有化学传递的情况下是否可以发生电传递?我们在一个具有实验优势的制备中探讨了这个问题。我们研究的 B21 神经元是一种参与摄食的 Aplysia 感觉神经元,它与其他已鉴定的细胞建立电和化学连接。之前我们证明了化学突触传递依赖于膜电位。当 B21 在其被外周激活之前和期间在中央去极化时,它会发生,但如果 B21 在其静息膜电位下被外周激活,则不会发生。在本文中,我们研究了膜电位对电传递的影响。我们证明了两种类型的传递的最大增强发生在不同的电压范围内,电传递的增强发生在更超极化的电位(即需要更少的中央去极化)。此外,我们描述了一种生理相关的刺激,它在 B21 的体区诱导尖峰和去极化的包络。这种去极化不会诱导功能性的化学突触传递,但与最大增强电传递所需的去极化相当。因此,在这项研究中,我们描述了一种可以通过膜电位选择性控制电和化学传递的情况。

相似文献

本文引用的文献

8
Dynamic sensorimotor interactions in locomotion.运动中的动态感觉运动交互作用。
Physiol Rev. 2006 Jan;86(1):89-154. doi: 10.1152/physrev.00028.2005.
9
Connexon connexions in the thalamocortical system.丘脑皮质系统中的连接子连接
Prog Brain Res. 2005;149:41-57. doi: 10.1016/S0079-6123(05)49004-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验