Foundation for Fundamental Research on Matter Institute for Atomic and Molecular Physics (FOM Institute AMOLF), 1009 DB, Amsterdam, The Netherlands.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9408-13. doi: 10.1073/pnas.1016616108. Epub 2011 May 18.
In cells, many vital processes involve myosin-driven motility that actively remodels the actin cytoskeleton and changes cell shape. Here we study how the collective action of myosin motors organizes actin filaments into contractile structures in a simplified model system devoid of biochemical regulation. We show that this self-organization occurs through an active multistage coarsening process. First, motors form dense foci by moving along the actin network structure followed by coalescence. Then the foci accumulate actin filaments in a shell around them. These actomyosin condensates eventually cluster due to motor-driven coalescence. We propose that the physical origin of this multistage aggregation is the highly asymmetric load response of actin filaments: they can support large tensions but buckle easily under piconewton compressive loads. Because the motor-generated forces well exceed this threshold, buckling is induced on the connected actin network that resists motor-driven filament sliding. We show how this buckling can give rise to the accumulation of actin shells around myosin foci and subsequent coalescence of foci into superaggregates. This new physical mechanism provides an explanation for the formation and contractile dynamics of disordered condensed actomyosin states observed in vivo.
在细胞中,许多重要的过程都涉及肌球蛋白驱动的运动,这种运动能够积极重塑肌动蛋白细胞骨架并改变细胞形状。在这里,我们研究了在缺乏生化调节的简化模型系统中,肌球蛋白如何通过集体作用将肌动蛋白丝组织成收缩结构。我们表明,这种自组织是通过一个主动的多阶段粗化过程发生的。首先,肌球蛋白沿着肌动蛋白网络结构移动形成密集焦点,然后焦点合并。然后,焦点在它们周围的壳层中积累肌动蛋白丝。由于肌球蛋白驱动的合并,这些肌动球蛋白凝聚物最终会聚集在一起。我们提出,这种多阶段聚集的物理起源是肌动蛋白丝高度不对称的负载响应:它们可以承受很大的张力,但在皮牛顿的压缩载荷下很容易弯曲。由于肌球蛋白产生的力远远超过这个阈值,连接的肌动蛋白网络会在肌球蛋白丝上产生弯曲,从而抵抗肌球蛋白丝的滑动。我们展示了这种弯曲如何导致肌球蛋白焦点周围的肌动蛋白壳层的积累,以及随后焦点的合并形成超聚集体。这种新的物理机制为体内观察到的无序凝聚肌动球蛋白状态的形成和收缩动力学提供了一种解释。